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Chapter 4

Recurrent and Convolutional Sequence Models

The whole is more than the sum of its parts.

–Aristotle, 384-322 BC [Ross, 1924]

Aristotle might or might not think of linguistic phenomena when having this thought, but it is
indeed something we want to express in this chapter: there is something different in a sentence
or phrase besides words. Of course, words have meanings, alone. However, when they come
together to form a sentence or phrase, the meaning of the whole could be much more complex
and diverse. This leads to the most beautiful aspect of language that human beings can express
any meaning using a finite set of elements (e.g., words or characters).

The infinite and non-compositional nature of language makes it more difficult to model a
sequence of words than to model individual words. A difficulty is that a word may repeatedly
alter its meaning in different contexts. Taking the idea of word embedding that a word can be
represented as a low-dimensional, real-valued vector, the “meaning” of a language unit could
be continuous. It is therefore possible to extend methods of distributed representation from
words to sequences of words. This leads us to explore models in which the process of dealing
with variable-length word sequences is fundamentally continuous.

Here we consider the general approach to learning the distributed representation of word
sequences. In particular, we consider recurrent and convolutional neural networks which have
been extensively used in many fields ranging from speech processing to computer vision. For
natural language inputs, the result of applying these models is a sequence-level representation
of the input. The representation could be either a single real-valued vector, or a sequence of
such vectors, each corresponding to a contextualized representation for an input word of the
input sequence. Such a model of representation, that can broadly be called an encoder, is
generally used with a variety of systems whose input is sequential data. We will see several
examples of it in this chapter.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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4.1 Problem Statement
For many NLP applications, our objective is to make predictions based on an input sequence.
Let us consider again the text classification problem mentioned in Chapter 1. If we obtain
a text that may talk about food or not, we want to assign one of the two classes to it (say
Food or Not-food). To do this, a common method of classification is to represent the text as a
bag of features, denoted as H. Then, a probability is assigned to each of the classes using a
probabilistic model Pr(y|H). The predicted class is the one that has the maximum probability
ŷ = argmaxyPr(y|H).

While this is a standard procedure for classification, the underlying idea can be used to
describe a general problem. Formally, let w = w1...wm be a sequence of words1. A sequence-
level NLP system can be formulated as a function that maps the sequence w to some output
y. This can be divided into two steps, called the representation (or encoding) step and the
prediction step.

• Representation (or Encoding). It transforms the input sequence w to some “features”
H by using an encoder Enc(·):

H = Enc(w) (4.1)

• Prediction. A predictor Predict(·) takes H and generates an output:

y = Predict(H) (4.2)

A simple form of H is a feature vector. For example, H could be a set of human-designed
indicator features extracted from w (as a high-dimensional sparse representation), or a set of
real numbers indicating some latent features (as a low-dimensional dense representation). In
NLP, another common form of H is a sequence of vectors in which each vector hi corresponds
to an input word wi (see Figure 4.1). In this case, hi can be viewed as a “new” representation
of both wi and its context in w2. The correspondence between hi and wi enables the represen-
tation to make distinctions among different positions of the sequence, and more importantly, to
vary its modeling power for variable-length inputs.

The form of y is dependent on the problem we intend to deal with. For example, for
classification problems, y is the index of a class (or a distribution of classes); for regression
problems, y is a real number; for translation problems, y is a sequence of words in another
language, and so on. Note that, in the above model, representation and prediction can be
regarded as two separate problems. A great advantage of isolating representation and prediction
is that we can use the same encoder in many applications with different predictors. This also
motivates a promising line of research in which a general-purpose encoder is trained on large-
scale data and then used as components in different downstream systems [Peters et al., 2018;

1Although we restrict ourselves to word sequences for discussion, the methods can be used to deal with
sequences of any language units, e.g., sub-words, characters, etc.

2This architecture can be extended to encoders in which the input and output have different lengths, say, the
input is w1...wm and the output is h1...hn (m ̸= n).
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(a) Encoding the sequence as a vector
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(b) Encoding the sequence as a vector sequence

Figure 4.1: Representing a word sequence as (a) a vector or (b) a sequence of vectors.

Devlin et al., 2019].

There are many possible forms for Enc(·) and Predict(·). For text classification, for
example, one way is to define Enc(·) as a function computing a feature vector using a set
of hand-crafted feature templates, and define Predict(·) as a statistical classification model
(such as SVMs and maximum entropy-based models). Another way is to define Enc(·) as a
multi-layer neural network that outputs a real-valued vector, and define Predict(·) as a simple
neural network that involves only one Softmax layer. In this chapter we will focus on neural
network-based encoders. We will show that such a type of encoder could be applied to a
number of NLP tasks in Section 4.5.

4.2 Recurrent Models

A study of various sequence models is not easy work. It is convenient, however, to first
introduce one of the most common and practical neural models, called recurrent neural
networks (RNNs). We will see later that RNNs are extensively used in sequence modeling,
and the techniques presented here are generic and applicable to many systems.

4.2.1 An RNN-based Language Model

Perhaps the most popular use of sequence models in NLP is estimating the probability of a
word sequence, also known as language modeling. Mathematically, language modeling is an
instance of a well-known problem in the field of stochastic processes (or random processes):
the problem of modeling time series data [Hamilton, 1994; Chatfield, 2003; Fuller, 2009]. As
a time series, a sequence of words can be treated as a sequence of data points at time intervals
that are equally spaced. In this sense, the methods we present here are somewhat general,
although the discussion on a broader range of time series problems is beyond the scope of this
book.

Given a sequence of words w1...wm, the goal of language modeling is to compute
Pr(w1, ...,wm). This joint probability is typically written as a product of conditional probabili-
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ties using the chain rule:

Pr(w1, ...,wm) = Pr(w1) ·Pr(w2|w1) · · ·Pr(wm|w1, ...,wm−1) (4.3)

In other words, the problem of generating w1...wm is the same as the problem of generating
a word wi+1 at a time based on the previous words w1...wi. RNN-based language models
represent w1...wi via a recurrent unit RNN(·) [Mikolov et al., 2010], like this

hi = RNN(hi−1,xi) (4.4)

where xi ∈ Rde is the word vector (or word embedding) for wi. Let V be the vocabulary from
which we can choose a word. If wi ∈ R|V | is a one-hot word representation 3, xi is given by
multiplying wi with the word embedding table C ∈ R|V |×de :

xi = Embed(wi)

= wiC (4.5)

As shown in Chapter 1, the use of C transforms a |V |-dimensional (and probably high-
dimensional) vector to a de-dimensional (and probably low-dimensional) vector. Note that C
is essentially a lookup table, with a distinct table entry (i.e., a row) for each word in V . So, the
right-hand side of Eq. (4.5) is in practice a function that selects a row from C with the word
index.

Now we go back to Eq. (4.4). The equation is not difficult to understand: the state of
the context we have seen so far (i.e., hi) is some representation of the combination of the
current input (i.e., xi) and the state of the earlier context (hi−1). Put another way, it can be
thought of as a process of repeatedly adding information of a new word to a cache of “history”.
An elegant aspect of this process is that it can be easily implemented by running Eq. (4.4) a
number of times until the end of the sequence.

RNN(·) can be any function that takes hi−1 and xi, and produces a new vector hi. The
vanilla RNN has a form

RNN(hi−1,xi) = ψ(hi−1U+xiV) (4.6)

where ψ(·) is an activation function, such as TanH(·) and Sigmoid(·). Together with Eqs.
(4.4) and (4.5), we can define hi as a function of hi−1 and wi

hi = ψ(hi−1U+wiCV) (4.7)

where U ∈Rdh×dh , V ∈Rde×dh , and C ∈R|V |×de are learnable parameters of the model, and
dh is a hyper-parameter indicating the number of dimensions of hi and hi−1.

We now have an encoder that represents the word sequence w1...wm as a sequence of

3The one-hot representation wi is a |V |-dimensional vector in which only one entry is 1 and all other entries
are zeros. Following the notation used throughout this book, a vector is in general represented as a variable in bold
text. Here we treat wi as a word index and interchangeably use it with the one-hot representation.
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RNN’s outputs H = {h1, ...,hm}. Given that each hi encodes the sub-sequence spanning
from w1 to wi, we can place a Softmax layer on hi to obtain a distribution of words:

yi+1 = Softmax(hiO+b) (4.8)

where O ∈ Rdh×|V | and b ∈ R|V |. Taking the word index wi+1, we have

Pr(wi+1|w1, ...,wi) = yi+1(wi+1) (4.9)

Thus, we have developed a language model that produces a probability Pr(wi+1|w1, ...,wi)

at each step. Figure 4.2 shows an illustration of the RNN-based language model for an example
sequence. To run this model on a word sequence, we surely wish to start with predicting w1 but
this requires a preceding word w0 that is taken as the input. A simple and widely applicable
method for giving an appropriate starting state to RNNs is to add a beginning symbol ⟨SOS⟩
to the sequence so that all sequences start with the same “word”. Likewise, we can attach an
end symbol ⟨EOS⟩ to the sequence to model the completeness of the sequence. This leads to a
new form of the probability of the sequence

Pr(⟨SOS⟩,w1, ...,wm,⟨EOS⟩) = Pr(⟨SOS⟩) ·
Pr(w1|⟨SOS⟩) ·
Pr(w2|⟨SOS⟩,w1) ·
· · ·
Pr(wm|⟨SOS⟩,w1, ...,wm−1) ·
Pr(⟨EOS⟩|⟨SOS⟩,w1, ...,wm) (4.10)

We can simply assume Pr(⟨SOS⟩) = 1. To obtain Pr(⟨SOS⟩,w1, ...,wm,⟨EOS⟩), we take
⟨SOS⟩ w1...wm as an input sequence and w1...wm ⟨EOS⟩ as the output sequence.

4.2.2 Training
As a neural network, the RNN-based language model can be trained in a regular way. The
training problem has been well discussed in Chapter 2. So, we do not give a full description in
this chapter, but a little bit about its basic idea as well as some refinements.

RNN-based language modeling can be framed as a next-step-prediction problem. Suppose
we are given a collection of word sequences S. For each sequence w = w1...w|w| in S, we
have a sequence of pairs of an input word and the corresponding gold-standard answer, like
this4

{(w1,w2),(w2,w3), ...,(w|w|−1,w|w|)}

The language model takes the input sequence w1...w|w|−1 and returns a sequence of

4While the ⟨SOS⟩ and ⟨EOS⟩ tricks are generally considered in real-world systems, we drop the ⟨SOS⟩ and
⟨EOS⟩ symbols from now on for simplification.
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Embedding Embedding · · · Embedding Embedding

RNN RNN · · · RNN RNN

Softmax Softmax · · · Softmax Softmax

w0 (⟨SOS⟩) w1
· · ·

wm−1 wm

wi−1C

ψ(hi−1U+xi−1V)

Softmax(hiO+b)

h1 h2 hm−1 hm

Pr(·|w0)

Embedding Layer

Hidden Layer

Output Layer
· · ·

Pr(⟨EOS⟩|w0, · · · ,wm)Pr(w1|w0)

Figure 4.2: Illustration of using an RNN-based language model to calculate
Pr(⟨SOS⟩w1...wm⟨EOS⟩). The input is ⟨SOS⟩w1...wm, and the output is the proba-
bility Pr(w1|⟨SOS⟩)Pr(w2|⟨SOS⟩ w1)...Pr(⟨EOS⟩|⟨SOS⟩ w1...wm). As Pr(⟨SOS⟩) =
1, the probability of generating the sequence is simply Pr(⟨SOS⟩w1...wm⟨EOS⟩) =
Pr(⟨SOS⟩)Pr(w1|⟨SOS⟩)Pr(w2|⟨SOS⟩ w1)...Pr(⟨EOS⟩|⟨SOS⟩w1...wm). For each input
wi, we first represent it as a word vector xi via the embedding layer, resulting in a sequence
of word vectors x0...xm. The RNN layer maps x0...xm to a sequence of hidden states
h1...hm+1. In this process, we repeat the same thing: an RNN unit takes both hi−1 and xi
and produces a new state hi. On top of that, we use the output layer (Softmax) to obtain
Pr(wi+1|⟨SOS⟩ w1...wi).

distributions y2...y|w|. See the following table for an illustration of the inputs and outputs of
the model.

Step History Input Output Gold-
(One-hot) (Distribution) Standard

1 w1 y2 w2

2 w1 w2 y3 w3

3 w1,w2 w3 y4 w4

... ... ... ... ...
|w|−2 w1,w2, ...,w|w|−3 w|w|−2 y|w|−1 w|w|−1

|w|−1 w1,w2, ...,w|w|−3,w|w|−2 w|w|−1 y|w| w|w|

A loss function L(yi,wi) is defined to measure how many “errors” we will make if we use
yi instead of the one-hot representation wi. A common choice is the cross-entropy loss which
computes the divergence of a distribution from another [Mitchell, 1997; Bishop, 2006].
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Then, the loss over the entire set is defined to be

L =
∑
w∈S

|w|∑
i=2

L(yi,wi) (4.11)

Once we know the loss, the training of the RNN-based language model can be achieved by
using gradient descent. A simple form of this method is the delta rule

θnew = θold− lr ·
∂L

∂θ
(4.12)

where θ stands for the parameters. For the model described in Section 4.2.1, θ includes C,
U, V, O and b. ∂L∂θ is the derivative of the loss with respect to the parameters, called error
gradient.

Eq. (4.12) can be understood as a process of moving the current parameters a small step
in the steepest downhill direction (i.e., the direction of −∂L

∂θ ). Here lr stands for how far we
move in each step of going downhill, also called the learning rate. Obtaining ∂L

∂θ often requires
a back-propagation process that flushes the error gradient from the output to the input. In
modern implementations of deep learning systems, in which neural networks are represented as
computation graphs, back-propagation is simple since it is just a by-product of graph traversal
and there are many automatic differentiation toolkits to do this. Similar algorithms, called
back-propagation through time (BPTT), were also used in earlier systems [Werbos, 1990].
For further information about training neural networks, see Chapter 2 and/or textbooks on this
subject [Goodfellow et al., 2016; Zhang et al., 2021].

If the input is a long sequence, the application of RNNs would result in a deep neural
network. In this case, the use of the chain rule of ordered derivatives makes large or small loss
derivatives accumulate, and the update to the parameters in Eq. (4.12) is consequently very
large or small. These are typically known as the exploding and vanishing gradient problems.
There are several methods to mitigate these problems for RNNs [Sutskever, 2013]. Some of
them are

• Regularization. Introducing regularization terms (such as the l1 and l2 norms on
parameter matrices) into training can avoid models in which most of the parameters have
large values, and thus help to avoid exploding gradients. Similarly, one can penalize the
cases in which the norms of the gradients are too small [Pascanu et al., 2013].

• Gradient Clipping. When the norm of the gradients is too large, it is natural to directly
scale down their magnitudes. A simple method is to clip the gradient norm in terms of
a threshold τ . If the norm ||∂L∂θ || is larger than τ , we can rescale ∂L

∂θ accordingly, say,
∂L
∂θ = τ

|| ∂L
∂θ

|| ·
∂L
∂θ .5

5It is usually formulated as an equation

∂L

∂θ
=

τ

max(τ, ||∂L∂θ ||)
· ∂L
∂θ

(4.13)
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• Truncated Back-propagation. Another idea is to break a long sequence of input-output
pairs into shorter pieces, and train RNNs on these separate sub-sequences [Williams and
Peng, 1990; Elman, 1990]. This reduces both the cost of training and the risk of too
large or small values in accumulating error gradients.

• Improved Architectures. It is also possible to redesign the model to overwhelm the
limits of standard RNNs, usually using the memory mechanism. In Section 4.3, we
will see a few examples of redesigning the recurrent unit for addressing the vanishing
gradient problem.

• Initialization and Constraints of Parameters. Initializing the model parameters to
a desirable region is generally helpful for optimization, and, sometimes, helpful for
preventing very small gradients. An alternative method is to randomly set the model and
only learn the parameters of the output layers [Jaeger and Haas, 2004].

• Non-saturating Activations. Many common activation functions have a compact
range of outputs, e.g., the Sigmoid function has a range of [0,1]. They are also called
saturating activation functions6. The use of saturating activation functions often leads
to the decay of gradients over layers, i.e., the vanishing gradient. It is therefore promising
to use non-saturating activation functions instead, e.g., the ReLU function.

• Normalization of Activations. Saturating activations may also result in getting stuck
in a saturated region of outputs, and we need a large learning rate to escape from
local optimums [Ioffe and Szegedy, 2015]. Thus, the training would be unstable, and
subtle changes in inputs and/or model parameters would lead to a big variance in model
behavior. A possible solution is to normalize the activations to reduce the variance,
e.g., subtracting the mean of the activations in a group of samples (e.g., samples in a
mini-batch of training), and dividing by their standard derivation.

4.2.3 Layer Stacking
If we think of the application of a recurrent unit as a function mapping a variable sequence to a
new variable sequence of the same length, it is natural to compose this function with another
function of the same type, or even with itself. This makes it very easy to extend RNNs to deep
neural networks: all you need is to stack RNNs.

Let hli be the output of the l-th recurrent unit in the stack at position i. We can apply a new
recurrent unit to hli, resulting in a new output at level l+1

hl+1
i = RNN(hl+1

i−1,h
l
i) (4.14)

where hl+1
i−1 is the output of the previous step at level l+1. To make Eq. (4.14) well-formed,

we typically define h0
i = xi. In other words, the stack starts off with the word vector xi, then a

series of RNN outputs (i.e., h1
i , h

2
i , h

3
i , etc).

To illustrate, Figure 4.3 (a) shows a stacked RNN for language modeling. We see that

6An activation function f(x) is non-saturating if and only if when x→∞ (or −∞), f(x)→∞. An activation
function is saturating if it is not a non-saturating activation function.
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· · · · · ·

RNN RNN

RNN RNN

· · · · · ·
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Layer l+1
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i−1 hl+1

i
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(a) A 3-layer RNN.

RNN RNN

· · · · · ·

RNN RNN

RNN RNN

· · · · · ·

Layer l

Layer l+1

Layer l+2

position i−1 position i
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i
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i−1 hl+1

i

hl+1
i

(b) A 3-layer RNN with residual connections.

Figure 4.3: 3-layer RNNs (with and without residual connections). To stack RNN layers,
we feed the output of layer l to layer l+ 1. Thus the output of layer l+ 1 is given by
hl+1
i =RNN(hl+1

i−1,h
l
i). Lines in red color stand for the residual connections which directly

add the input of a layer to its output, resulting in hl+1
i =RNN(hl+1

i−1,h
l
i)+hli.

applying a stack of recurrent units is equivalent to creating multiple layers of RNNs simultane-
ously. However, there would be a risk of confusion if we call an unrolled recurrent network
a layer, as the term layer typically refers to a set of neurons receiving the same inputs in a
feed-forward neural network. Here we extend the term layer to cover a more general concept:
a group of neurons that are topologically placed on the same level. So, we say that the language
model in Figure 4.3 has 3 RNN layers.

Stacking multiple layers of RNNs, we build a model which is deeper but more difficult
to train. This difficulty arises in part from the barriers of passing information through many-
layered RNNs. To make the training easier, a widely-used approach is to introduce skip
connections or residual connections into a multi-layer neural network [He et al., 2016]. These
connections are intended to leverage an additional path to allow information to skip layers. As
described in Chapter 2, the form of a residual neural network is given by

yl+1 = F (yl)+yl (4.15)

where yl is the output of layer l. Extending this formulation to Eq. (4.14) leads to multi-layer
RNNs with residual connections, given by

hl+1
i = RNN(hl+1

i−1,h
l
i)+hli (4.16)
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The only difference from Eq. (4.14) is that we introduce the identity map of hli to the
right-hand side of Eq. (4.16). Thus, the input hli is directly accessible from layer l+1. This
greatly simplifies the way that the information flows through the neural network, and allows
the system to “skip” layers in propagating errors. Figure 4.3 (b) shows a 3-layer RNN with
residual connections.

4.2.4 Bi-directional Models

The use of RNNs enables us to formulate the problem of encoding a word sequence as a
problem of left-to-right generation of words. One advantage of this approach is that the
modeling of context words arises naturally: the output of an RNN unit in some way describes
the history words up to that point. This feature makes it very straightforward to model the
probability distribution Pr(wi+1|w1, ...,wi), as we can use hi as a representation of the context
w1...wi, that is, Pr(wi+1|w1, ...,wi) = Pr(wi+1|hi).

The left-to-right generation is widely used in sequence generation, such as machine
translation. It can be viewed as an instance of autoregressive processes (AR processes) in
which the state of a variable is dependent on the state of the previous variables [Chatfield, 2003;
Box et al., 2015]7. However, such a method is not the only choice for modeling sequences.
We do not even necessarily restrict ourselves to language modeling for training a sequence
encoder. This gives rise to an interesting question: how can we develop an encoder of word
sequences without assumptions regarding the predictor? Answering the question leads us to
isolate the learning of the text encoder from a specific NLP task, and to regard it as a separate
task whose result can be applied to many other systems. A more detailed discussion is not the
focus here and we leave it to subsequent chapters.

We now present a simple extension of the left-to-right sequence model by returning to
RNNs. Note that in sequence modeling our desire is some representation of the entire sequence.
A problem with usual RNNs is that they are uni-directional models in which the context
words following wi are absent. To consider both the left and right contexts of a given word,
we can instead use bi-directional models. Figure 4.4 shows an example of the bi-directional
RNN. There are two sub-models: a left-to-right RNN and a right-to-left RNN. They have the

7As a stochastic process, an autoregressive process expresses a variable at time t by relating it to the past values
of the process and the current value of an error process [Chatfield, 2003]. Formally, a time series {z1, ...,zT }
describes an autoregressive process of order p if for any t ∈ {p+1, ...,T}

zt =

p∑
i=1

αizt−i+ ϵt (4.17)

where {α1, ...,αp} are the parameters of the process, and ϵt is the error at time t. This process is called regressive
because it has the same form as the multiple linear regression model. The prefix auto- comes from the way we
regress zt: zt is dependent on its past values instead of additional independent variables. One way to interpret
language modeling in an autoregressive process perspective is to simply treat {z1, ...,zT } as representations of a
sequence of words {w1, ...,wT }. Thus, we can gain some idea of predicting wt using previous words {w1, ...,wt}
by considering the autoregressive property of the problem. However, it should be noted that most of the sequence
generation models used in NLP are not mathematically equivalent to Eq. (4.17), although they are often called
regressive models. For example, the RNN-based language model discussed here is not a linear model. Rather, it
takes layers of non-linearity to describe the complex relationships among words.
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Embedding Embedding Embedding

wi−1 wi wi+1

RNN
(left-to-right)

RNN
(left-to-right)

RNN
(left-to-right)

· · · · · ·

RNN
(right-to-left)

RNN
(right-to-left)

RNN
(right-to-left)

· · · · · ·

hi−1 = [
−→
h i−1,

←−
h i−1] hi = [

−→
h i,
←−
h i] hi+1 = [

−→
h i+1,

←−
h i+1]

−→
h i

←−
h i

Figure 4.4: A bi-directional RNN model. Given a word sequence, we run an RNN from left to
right and another RNN from right to left. Therefore, at each position we obtain a left-to-right
representation and a right-to-left representation. The output is the concatenation of the two
representations so that it involves both the left and right contexts.

same architecture but work in opposite directions. For each input word wi, the left-to-right
RNN outputs a vector representing the context {w1, ...,wi} (denoted by

−→
h i), and the right-

to-left RNN outputs a vector representing the context {wi, ...,wm} (denoted by
←−
h i). We can

concatenate
−→
h i and

←−
h i to obtain a bi-directional representation

hi = [
−→
h i,
←−
h i] (4.18)

Thus, the bi-directional RNN has the same form of output as that of the uni-directional RNN,
that is, a sequence of vectors {h1, ..,hm}. Unlike the uni-directional RNN, the representation
hi here describes the context on both sides.

For a stronger model, the bi-directional RNN can be extended to a neural network of
multiple RNN layers. For example, we can run deep RNNs in two directions and combine their
results as in Eq. (4.18). Such model architectures have been extensively used in language and
speech processing tasks, including machine translation [Wu et al., 2016], sentiment analysis
[Tang et al., 2015], POS tagging [Huang et al., 2015], speech recognition [Graves et al.,
2013a;b], and so on.

4.3 Memory
RNNs can be appropriate for sequence learning in which we summarize at each step the past
inputs and then make some prediction on this summary of the “history”. A benefit of RNNs is
that we can represent a history of arbitrary length as a fixed-size vector, and update it when
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new information arrives. In other words, we have a memory, though not explicitly defined, to
store the information. Next we show that such a memory mechanism is general and can be
used to improve sequence models.

4.3.1 Memory as A System
In psychology, memory is the ability of the mind to retain and recall information. There
are many cognitive models of psychology. A well-known model is the multi-store model
[Atkinson and Shiffrin, 1968]. It defines memory as a system consisting of three components:
short-lived sensory memory, short-term memory, and long-term memory. The sensory
memory retains the sensory information that is very quickly ceased, such as immediate data
from the senses of sight and smell. The short-term memory stores information for a longer
time but is not permanent. An example of the short-term memory is that we try to memorize a
sequence of digits (e.g., a phone number) but may forget it after a short while. The long-term
memory is permanent. This also means that the information is retained indefinitely. For
example, adults can remember details of the events that occurred in their childhood.

Given this categorization, there appear to be interesting connections between the above
model of memory and the neural networks we discuss here. For example, the state of a recurrent
unit can be simply thought of as a short-term memory. It maintains information until we get
to the end of a sequence and would be reset if we switch to a new sequence8. On the other
hand, the entire language model and associated parameters perform more like a long-term
memory: the language model is intended to learn and memorize some useful information
about probabilistic word prediction from the text, so that it can be used whenever we want
to. Moreover, there are other concepts that may stem from psychology but are used in several
different fields. For example, coding or encoding is referred to as how the information is stored
in a memory, duration is referred to as how long the information is stored in a memory, and
capacity is referred to as how much information is stored in a memory.

In machine learning and NLP, we can gain an understanding of memory by considering it
from an information processing point of view. Broadly, memory can be viewed as a system
that writes information to a “storage” and reads it when queried. It has the following functions.

• Encoding. The input of the system is encoded in a form that is easy to process. For text
inputs, this can be simply thought of as the same encoding process as we discuss in both
Chapter 3 and this chapter: a word or a sequence of words is represented as a feature
vector or a sequence of feature vectors.

• Update. Given the encoded information, we store it in the memory. This operation is
generally dependent on the organization of the memory. For example, one can treat a
group of encoded items as a datastore with an indexing system. In this case, storing
an item requires finding the right place to keep it. Alternatively, one can represent the
memory as a single vector of numbers.

• Retrieval. The stored information can be retrieved. This typically involves matching

8Another explanation is that the state of a recurrent unit at step i may contain little information about very early
steps.



4.3 Memory 15

each item in the memory against an input query. If the memory is represented in a
simpler form, such as a vector, it may not be explicitly retrieved, and we return the entire
memory when required.

These functions can be designed in many different ways, leading to a variety of NLP
systems. One simple example is information retrieval [Manning et al., 2008]. A typical
information retrieval system indexes a large number of documents (or other resources) and
allows users to search for interested information in this collection of documents. To enable
search, documents are represented in forms that are convenient to use, for example, we may
use the bag-of-words model to compute the matching score between a document and a query,
and may use the inverted index to make an efficient mapping of a document to its location
in the storage. Systems of this type cover a wide range of applications, including translation
memory, dialogue, summarization, document classification, and so on.

Another design choice made for memory systems is to consider, either partially or fully,
a continuous form for the above components. One method is to encode each input item as a
real-valued vector (e.g., a word embedding) but use the same modules of update and retrieval
as in usual information retrieval-like systems [Weston et al., 2015; Khandelwal et al., 2019].
An alternative method is to adopt differentiable functions for all the steps in building and
accessing the memory. These models are typically implemented using neural networks and
trained using gradient descent [Sukhbaatar et al., 2015; Graves et al., 2014; Kumar et al., 2016;
Graves et al., 2016; Miller et al., 2016]. This idea motivates work on exploring approaches to
coupling neural networks with memories, such as end-to-end memory networks and neural
Turing machines. Note that the above models are sometimes called external memories, as
they are used as separate modules working with other systems.

Memory can also work as an internal or hidden component of a system. In this case, the
memory is typically rebuilt for each input sample, and so it can be regarded as an instance of the
short-term memory. There are various ways of using this type of memory to improve sequence
models. In the remainder of the section, we will focus on using the memory mechanism
in RNNs. In Chapter 5, we will see how the idea of memory is extended to model the
correspondence between tokens of two sequences.

4.3.2 Long Short-Term Memory

In the vanilla RNN presented in Section 4.2.1, the summarization of the context words was
given by the output of a recurrent unit. It implicitly defines a memory, and thus enables the
prediction based on past information for an arbitrary duration. The memory simply combines
the representations of the earlier history w1...wi−1 and the input at the current step wi, but does
not consider how much information from different steps should be squeezed into a fixed-length
representation. A problem with this model is that, if long-term dependencies are required for
prediction, memory may provide little information about it, and it may be hard to learn these
dependencies through back-propagation [Bengio et al., 1994; Pascanu et al., 2013]. A more
powerful approach, therefore, is to compute what should be retained at each step, and to let the
model learn to decide whether to memorize or forget.
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Long short-term memory (LSTM) is perhaps the best-known variant of RNNs to accom-
plish the above goal [Hochreiter and Schmidhuber, 1997]. The basic idea of LSTM is that a
recurrent unit can learn to memorize useful things and forget unuseful things by maintaining an
explicit memory [Gers et al., 2000]. To this end, the vanilla recurrent unit is replaced with an
LSTM unit that is made up of an output vector (call it a recurrent cell), a memory vector (call
it a memory cell), and three gates to control the information flow inside the LSTM unit. As an
extension to RNNs, an LSTM network deals with an input sequence as usual: it starts with
some initial states, and then repeatedly takes an input and outputs a vector. A key difference
between LSTM networks and RNNs is that the LSTM unit of step i takes both the recurrent
cell and the memory cell of its previous step. The form of an LSTM unit is given by

(hi,ci) = LSTM(hi−1,ci−1,xi) (4.19)

where hi ∈ Rdh is the recurrent cell of step i, ci ∈ Rdh is the memory cell of step i, and
xi ∈ Rde is the input of step i. Given LSTM(·), applying the LSTM model is straightforward.
We simply repeat the call of LSTM(·) for the inputs {x1, ...,xm} and obtain the outputs
{h1, ...,hm}. This resembles the way we use vanilla RNNs, making it very easy to extend
LSTM to multi-layer models (see Section 4.2.3) and bi-directional models (see Section 4.2.4).

We can divide LSTM(·) into three steps.

• Step 1: Forget. Assuming that ci−1 contains the information that the model memorizes
at step i−1, we need to determine how much information in ci−1 is discarded in building
ci. To do this, a gate is used to control to what extent we forget for each dimension of
ci−1. The forget gate is defined to be:

fi = Sigmoid(hi−1Uf +xiVf +bf) (4.20)

where fi ∈ [0,1]dh is a vector with the same number of dimensions as ci−1. The Sigmoid
function maps the input data to the range [0,1]. Thus, an entry of fi indicates how much
is preserved for the same entry of ci−1. Taking this further, fi⊙ ci−1 describes the
memory that is left out after passing through the forget gate. See Figure 4.5 (a) for an
illustration of the forget gate in the LSTM unit.

• Step 2: Update. Next we update the memory by considering both the previous state
of the memory (i.e., ci−1) and the input of the LSTM unit (i.e., xi and hi−1). We first
combine xi and hi−1 using a simple neural network, like this

ĉi = TanH(hi−1Uc+xiVc+bc) (4.21)

ĉi can be treated as the new information we intend to add to the memory at step i. Again,
we need a way to control the amount of information coming into the memory. Hence we
define an input gate as

gi = Sigmoid(hi−1Ug+xiVg+bg) (4.22)
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This equation is similar to Eq. (4.20) but with different parameters. We then define
gi⊙ ĉi to be the actual new information that we are interested in. Taking both fi⊙ci−1

and gi⊙ ĉi, the memory cell at step i is given by

ci = fi⊙ci−1+gi⊙ ĉi (4.23)

In other words, we forget something old in ci−1 and memorize something new in ĉi.
See Figure 4.5 (b) for an illustration of the update step.

• Step 3: Output. In the last step we generate the output hi based on the memory ci.
Instead of copying ci to hi, we feed ci to a hyperbolic function and multiply its result
with the output gate. Like Eqs. (4.20) and (4.22), the output gate is given by

oi = Sigmoid(hi−1Uo+xiVo+bo) (4.24)

Then, the output of the LSTM unit is defined to be

hi = oi⊙TanH(ci) (4.25)

See Figure 4.5 (c) for an illustration of the output step.

The LSTM model is parameterized by Uf ,Uc,Ug,Uo ∈ Rdh×dh , Vf ,Vc,Vg,Vo ∈
Rde×dh , and bf ,bc,bg,bo ∈ Rdh . Compared with vanilla RNNs, additional parameters are
introduced here because of the use of three gates. In practice one can implement them in many
different ways, e.g., using activation functions other than Sigmoid(·) and TanH(·), removing
the bias terms bf , bc, bg, and bo, and so on. Training LSTM models follows the standard
paradigm of training RNN-based models. For example, we can build an LSTM-based language
model and train it by using the methods presented in Section 4.2.2.

4.3.3 Gated Recurrent Units

Above, we saw the important role played by the gate units and the memory cell. In general the
use of these neural networks makes the model computationally more expensive. An alternative
to LSTM in a cheap case, namely gated recurrent units (GRUs), uses a simplified model
structure with fewer gate functions [Cho et al., 2014; Chung et al., 2014]. Unlike LSTM, a
GRU does not have a memory cell so, as an RNN unit, it takes both the previous state vector
hi−1 and the current input vector xi, and produces the current state vector hi.

In GRUs, there are two gate units: the reset gate and the update gate. The reset gate, as
the name suggests, is used to reset (or rescale) the state of the GRU (i.e., hi−1). Following the
gate functions used in LSTM, the reset gate is defined to be

ri = Sigmoid(hi−1Ur+xiVr+br) (4.26)

where ri ∈ [0,1]dh is a vector of scalars, each dimension describing how much information in
the corresponding dimension of hi−1 is retained. Thus, we have a representation of retained
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Figure 4.5: The architecture of the LSTM unit. At step i, it takes the input xi, and then updates
both the memory cell (ci−1→ ci) and the recurrent cell (hi−1→ hi). This process involves
three gates: the forget gate controls how much information in ci−1 is retained at step i, the
input gate controls how much information in ci−1 and xi is retained at step i, and the output
gate controls how much information in ci is used to form hi.

information

υi−1 = ri⊙hi−1 (4.27)

Taking both the retained information υi−1 and the current input xi, a new state vector is defined
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to be

ĥi = TanH(υi−1Uh+xiVh+bh) (4.28)

The update gate is then given by

ui = Sigmoid(hi−1Uu+xiVu+bu) (4.29)

ui can be thought of as a coefficient vector which could be used to control the trade-off in
choosing the new state vector ĥi or the old state vector hi−1. Finally, the output of the GRU is
defined as a linear interpolation of ĥi and hi−1

hi = ui⊙ ĥi+(1−ui)⊙hi−1 (4.30)

Figure 4.6 shows how the information flows in a GRU unit. The parameters here are
Ur,Uh,Uu ∈ Rdh×dh , Vr,Vh,Vu ∈ Rde×dh , and br,bh,bu ∈ Rdh . Therefore, the GRU
model is smaller than the LSTM model because of the use of fewer gate units. Note that
removing the memory cell makes GRUs more efficient. In this case, the role of memory is
implicitly played by GRU’s output hi, and we maintain it by memorizing more “important”
information.

4.4 Convolutional Models
In this section we describe another type of model for sequence modeling, called convolutional
neural networks (CNNs). Our description is mostly standard, but not a full introduction to
the numerous variants of CNNs and cutting-edge techniques. In particular, we focus on using
CNNs to deal with sequential data and presenting some refinements.

4.4.1 Convolution

CNNs feature their shared-weight architectures by which a kernel or filter slides over the input
data and produces a map of features. The idea is that the filter only receives signals from a
restricted region of data at a time (call it the receptive field), and computes the weighted sum
of these input signals. To illustrate this, we follow the convention that a filter in CNNs is
generally used to deal with 2D data. Consider a 3×3 data matrix

A =

1 9 7

3 1 2

0 1 −1

 (4.31)

and a 2×2 filter with a weight matrix

W =

[
2 0

2 2

]
(4.32)
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Figure 4.6: The architecture of the GRU. Unlike the LSTM unit, the GRU does not involve
a memory cell, and thus follows the same input and output forms of a standard RNN unit.
There are two gates in the GRU. The reset gate controls how much information in hi−1 is
retained at step i. The retained information is then taken to fuze with the input xi, generating
the candidate output ĥi. The update gate seeks a balance between ĥi and hi−1 in computing
the final output of the GRU.

We can apply the filter to every 2×2 sub-matrix of A (there are four 2×2 sub-matrices here),
and compute the sum of the 2×2 entries weighted by W. For example, consider the 2×2

sub-matrix in the upper left corner of A. The output of the filter is given by

Conv(

[
1 9

3 1

]
,W) = Conv(

[
1 9

3 1

]
,

[
2 0

2 2

]
)

= 1×2+9×0+3×2+1×2

= 10 (4.33)

Conv(·) defines a convolution operation that sums the entries of the element-wise product
of the two matrices. The convolution operation can be extended to cover the entire input matrix
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by sliding the filter over it, as follows

Conv(A,W) = Conv(

1 9 7

3 1 2

0 1 −1

 ,W)

=


Conv(

[
1 9

3 1

]
,W) Conv(

[
9 7

1 2

]
,W)

Conv(

[
3 1

0 1

]
,W) Conv(

[
1 2

1 −1

]
,W)


=

[
10 24

8 2

]
(4.34)

The output

[
10 24

8 2

]
is also called the feature map for the filter W on A. Sometimes,

the convolution operation Conv(A,W) is written as A∗W where the symbol ∗ stands for
the convolution product.9

Now let us consider a more general description of convolution in CNNs. Suppose that A
is a multi-dimensional data array. A filter defines a window (or receptive field) on A. We can
move the window on A in different directions. This results in a set of data arrays, denoted by
Ω. Each data array ap ∈ Ω is formed by the elements from the corresponding region of A. For

example, there are four sub-matrices in Eq. (4.34)): a1 =

[
1 9

3 1

]
, a2 =

[
9 7

1 2

]
, a3 =

[
3 1

0 1

]
,

and a4 =

[
1 2

1 −1

]
. Also, we suppose the filter is parameterized by a weight array W with the

same size of a, i.e., |ap|= |W|. The result of applying the filter to A is an array of features

Conv(A,W) =
[
v1 ... v|Ω|

]
(4.37)

9In mathematical analysis, given two integrable functions f(·) and g(·), convolution defines a new integrable
function f ∗g(·) to describe the integral of f(·) weighted by reflected, shifted g(·). More formally, the convolution
for continuous functions is defined as

f ∗g(x) =

∫
R
f(y)g(x−y)dy (4.35)

where f(y) is the function that we are concerned with, and g(x−y) is the weight function which is translated by
reflecting g(y) along the y-axis and then shifting it by x. A special case is that x and y are both integers. In this
case, we can define f ∗g(·) as

f ∗g(x) =
∑
y

f(y)g(x−y) (4.36)

which is the basic form of Eq. (4.33). In CNNs, x, y and x−y can be seen as indices of items in data arrays. f(y)
is a data item in the input array, and g(x−y) is the corresponding weight in the filter. By using Eq. (4.36), we
calculate the value of the item indexed by x in the output array f ∗g(x) (i.e., the feature map).
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Each feature vp is given by

vp = Conv(ap,W)

= ap ·W

=

|W|∑
k=1

ap(k) ·W (k) (4.38)

where ap(k) and W (k) are the k-th elements of ap and W, respectively. Note that the array[
v1 ... v|Ω|

]
can be organized into different shapes, such as a matrix or a 3D tensor, though

they are essentially the same thing from the data storage viewpoint. For example, for 2D input
data and a 2D filter, the feature map is a matrix like Eq. (4.34).

Furthermore, we need to consider two things to make the model practical. First, we need
to specify the stride of each move of the filter over A. In the above example, we simply use
stride= 1. By choosing a larger stride, we can compress A into a smaller number of features.
Second, in some situations, to ensure that the feature map has a desired size, we can add
dummy elements (or paddings) around the input data. A common method of padding is to set
zeros to the elements outside the input region. For example, consider a 2×2 data matrix.

A =

[
1 9

7 3

]
(4.39)

We can add zero-valued entries around it to obtain a 4×4 matrix, like this

Apadding =


0 0 0 0

0 1 9 0

0 7 3 0

0 0 0 0

 (4.40)

Using the same filter as in Eq. (4.33) with stride= 1, we have a 3×3 feature map

Convstride=1(Apadding,W) =

 2 20 18

14 22 24

0 14 6

 (4.41)

If stride= 2, then we would have a feature map with the same size of the input data

Convstride=2(Apadding,W) =

[
2 18

0 6

]
(4.42)

4.4.2 CNNs for Sequence Modeling
Following the formulation in the previous sections, we assume that the input of a sequence
model is a vector sequence x1...xm and the output is another vector sequence h1...hm. For
example, we can think of x1...xm as a matrix X ∈ Rm×de in which the i-th row vector is the
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Figure 4.7: Two filters applied to a sequence of word vectors. The input involves ten word
vectors (words x1...x6 and two padding words on each of the two ends of the sequence). Each
word vector has 6 dimensions, and so, the input is a 10× 6 matrix. Filter 1 has a receptive
field of size 3×6. By sliding it over the input matrix, we obtain a sequence of outputs, each
corresponding to a position (i.e., a sequence of 6 outputs). Similarly, we apply filter 2 to the
input sequence and obtain another sequence of outputs. The two output sequences are then
organized as a 2×6 matrix in which the i-th row vector is hi.

representation of the i-th word of the sequence.

It is straightforward to perform convolution on X. Since xi is just a set of unordered
features, it is not necessary to slide a filter over different features. Hence we can use a receptive
field of size r× de, and consider all the dimensions of xi in the convolution operation. In
practical applications, there might be multiple filters for representing the inputs in different
aspects. For example, one can use a filter with a large receptive field to involve more contexts
in modeling, and use a filter with a small receptive field to concentrate more on local features.
See Figure 4.7 for two filters that are used to deal with a sequence.

To distribute features to {h1, ...,hm}, we can associate each application of a filter to a
position of the sequence. To ensure the input and output sequences are of the same length, a
padding vector is added to each end of the sequence. The following shows the input and output
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of a CNN for an example sequence.

Position Input Receptive Field Output

0 x0(= 0) N/A N/A

1 x1 {x0,x1,x2} h1

2 x2 {x1,x2,x3} h2

3 x3 {x2,x3,x4} h3

4 x4 {x3,x4,x5} h4

5 x5(= 0) N/A N/A

An activation function is typically used to introduce some non-linearity to the final output.
In this way, we build a standard convolutional layer which can be viewed as a sequence of
fully connected neural networks, each taking inputs from a fixed-size window. For the i-th
position, the output of the convolutional layer is given by

vi = ψ(Conv(ai,W)) (4.43)

where ai is the inputs in the receptive field10, and W is the parameters of the filter. In situations
involving multiple filters (say dh filters), we have a set of parameters {W(1), ...,W(dh)}, a
set of activation functions {ψ(1), ...,ψ(dh)}, and a set of inputs {a(1)i , ...,a

(dh)
i }. Each tuple

(W(k),ψ(k),a
(k)
i ) gives an output by

v
(k)
i = ψ(k)(Conv(a

(k)
i ,W(k))) (4.44)

Note that v(k)i is simply an entry of hi. Thus, hi can be written as

hi =
[
v
(1)
i ... v

(dh)
i

]
(4.45)

Many CNN-based systems of practical interest comprise two or more convolutional layers.
The simplest way to achieve this is layer stacking, as in multi-layer RNNs (see Section 4.2.3).
That is, we treat the output of a convolutional layer as the input of the following layer. See
Figure 4.8 for an example of a CNN involving three convolutional layers. One of the benefits
of multi-layer CNNs is a larger scope for representation. As seen from Figure 4.8, a neuron in
layer 1 connects three input vectors, while a neuron in layer 3 connects, though not directly,
seven input vectors. Since neurons of the higher-level layers receive and process signals
from a larger span of the sequence, they are expected to produce a higher-level representation
of the sequence and to be able to deal with more difficult problems, such as long-distance
dependencies.

In some applications, we need a fixed-length, low-dimensional representation of the entire
sequence. A common way is to add a pooling layer to merge {h1, ...,hm} into a single vector.
For example, we can select the maximum value (i.e., max-pooling) or average the values (i.e.,

10For an r×de receptive field, ai is defined to be {x⌈i− r
2 ⌉, ...,x⌈i+ r

2−1⌉} or {x⌊i− r
2 ⌋, ...,x⌊i+ r

2−1⌋}.
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Figure 4.8: A CNN with 3 convolutional layers (stride = 1 and r = 3). Each layer takes a
sequence of vectors and produces another sequence of vectors. In this process a filter moves
over the input and performs the convolution operation in each move. In layer 1, the receptive
field of the filter is a region of three input items (see green shadows). The higher a layer is,
the larger receptive field a filter has. For example, in layer 3, an application of the filter can at
most cover the entire input sequence (see orange shadows).

max-pooling) along each dimension. This is a generic method in machine learning and is
applicable to most of the sequence models discussed in this book.

4.4.3 Handling Positional Information

One interesting property of CNNs is their ability to balance complexity and efficiency. This
is achieved by restricting full connectivity to only a small region of the input data. This also
leads us to describe a convolution layer using the same mathematical form of a layer in a
fully-connected neural network: the output of a neuron is some transformation of the weighted
sum of the input numbers. Despite the simplicity inherent in modeling, a problem with such
models is that the order of inputs is completely ignored. An interesting point, however, is
that, if we restrict ourselves to sequence modeling, this should not be a problem because the
output of the model is itself a sequence. It seems reasonable to assume that the output sequence
preserves the ordering information of the input sequence. On the other hand, applying CNNs
to sequential data does not guarantee a one-to-one mapping between the input and output items.
Technically, hi is not simply a representation of xi. It instead encodes a window of inputs
centered at xi. This, in turn, makes the problem very complicated, since it is difficult to work
out from hi how those inputs are ordered.
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Explicitly modeling word orders is very important in NLP, and has been extensively
studied in tasks like machine translation [Lopez, 2008; Koehn, 2010]. For neural network-
based models, one may address the problem by resorting to order-sensitive model architectures
like RNNs. A more popular approach in recent systems is to develop a positional encoding
sub-model and incorporate it into existing sequence models [Gehring et al., 2017b; Vaswani
et al., 2017; Shaw et al., 2018; Dufter et al., 2022]. Formally, we say that the input at position i
is a combination of the original input xi and the positional encoding of i (denoted by PE(·)):

xpi = Merge(xi,PE(i)) (4.46)

where Merge(·) combines xi and PE(i) in some way. The use of positional encoding is
straightforward: all you need is to replace {x1, ...,xm} with {xp1, ...,xpm} in a sequence
model. So, this approach is model-free.

In this subsection, we present several versions of PE(·) and ways to combine them with
xi. Note that the following discussion is not specific to CNNs. We consider it here because
positional encoding is useful for models that are insensitive to the order of inputs, and CNNs
are a good example to see how it is used [Gehring et al., 2017a;b]. In Chapter 6, we will see an
application of positional encoding in Transformer which is a state-of-the-art neural model in
many areas.

1. Offset-based Positional Encoding

The simplest way to describe a position i is to just leave it as it is. This can be formulated as
the “distance” from a reference point

PE(i) = i− i0 (4.47)

where i0 is an integer indicating where we start counting. If i0 = 0, PE(i) = i gives the normal
way to define a position. Note that PE(i) could be a negative number if i0 > i. In this sense,
PE(i) is not a real distance but it is fine with considering it as a feature in a machine learning
system. To design a non-negative measure, the right-hand side of Eq. (4.47) can be defined as
an absolute value

PE(i) = |i− i0| (4.48)

Treating positions as simple integers leads to unbounded, discrete positional encoding.
A more desirable method might be to use a continuous representation in a range of values,
because it allows the system to work within a sample space that is smooth and easy to optimize.
A simple way to do this is normalization. For example, dividing i− i0 by some maximum
value, we obtain a normalized version of the offset-based encoding

PE(i) =
i− i0

imax− i0
(4.49)

For example, we can set imax = the maximum possible length of the sequence and i0 = 0,
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so that PE(i) chooses its value in [0,1]. Another common choice is to set imax =m (i.e., the
length of the input sequence) and define PE(i) as a ratio whose value varies as m changes.

To make use of these scalar positions, it is straightforward to enrich the original input
vectors by adding new dimensions, provided they can be viewed as new features. Thus, xpi is
given by

xpi = [xi,PE(i)] (4.50)

where [·] stands for the concatenation operation.

2. Sinusoidal Positional Encoding
The next obvious step is to represent positions as vectors instead of scalars. Although vector-
izing the representations of positions sounds complicated, a simple idea is to use a carrying
system which describes how a natural number is expressed by a polynomial with respect to a
base [Kernes, 2021]. For example, i can be written as

i =

kmax∑
k=0

a(i,k)bk (4.51)

where a(i,k) is the k-th digit, kmax+1 is the maximum number of digits, and b is the base of
the system. The carrying occurs when a(i,k) reaches b: we increase a(i,k+1) by 1 and roll
back a(i,k) to 0. In this way we can change a(i,k) with a period of bk, that is, a(i,0) changes
with a period of b0, a(i,1) changes with a period of b1, a(i,2) changes with a period of b2, and
so on.

Using this system, i can be represented as a vector

PE(i) =
[
a(i,0) a(i,1) ... a(i,kmax)

]
(4.52)

For example, when b = 2, PE(11) =
[
1 1 0 1

]
. However, in Eq. (4.52), PE(i) is still

a discrete function. As discussed throughout this book, we may want a continuous vector
representation that can describe intermediate states between discrete events. Considering
a(i,k) as a periodic function, a common choice is the sine function. Thus a(i,k) can be
re-defined, as follows

a(i,k) = sin(i ·ωk) (4.53)

This function has an amplitude of 1 and a period of 2π
ωk

. Using an analogous form of periods to
that used in Eq. (4.51), we define ωk as

ωk =
1

(bmodel)k/dmodel
(4.54)

where bmodel > 0 and dmodel > 0 are hyper-parameters of the model. Obviously, we have
2π
ω0
< 2π

ω1
< ... < 2π

ωkmax
.
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Figure 4.9: A heat map of the positional embedding model of Eqs. (4.57) and (4.58) (bmodel =
10,000 and dmodel = 512). Consider a position i (i.e., the i-th row), then move another position
j from i upwards or downwards. Intuitively, when i and j are closer, the corresponding row
vectors are more similar. By contrast, when j moves away from i, the similarity is not that
obvious. This property helps explain the idea behind the positional embedding model: the
“distance” between two positions is implicitly modeled by comparing their multi-dimensional
representations.

Similarly, we can define a(i,k) via the cosine function

a(i,k) = cos(i ·ωk) (4.55)

Taking both Eqs. (4.53) and (4.55), we create a new representation of i, as follows

PE(i) =
[
sin(i ·ω0) cos(i ·ω0) ... sin(i ·ωkmax) cos(i ·ωkmax)

]
(4.56)

Vaswani et al. [2017] instantiated the above form by setting bmodel = 10,000. Let PE(i,k)
be the k-th dimension of PE(i). Vaswani et al. [2017]’s version of positional encoding is
written as

PE(i,2k) = sin(i · 1

100002k/dmodel
) (4.57)

PE(i,2k+1) = cos(i · 1

100002k/dmodel
) (4.58)

Choosing bmodel = 10,000 is empirical. One can adjust it for specific tasks. Figure 4.9
plots the positional encoding for different positions. We see that, when k becomes larger, the
change of the color follows a larger period.

Note that Eqs. (4.57) and (4.58) have a useful property that PE(i+µ) can be easily
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expressed by a linear function of PE(i) for a given offset µ11

PE(i+µ,2k) = PE(i,2k) ·PE(µ,2k+1)+

PE(i,2k+1) ·PE(µ,2k) (4.61)

PE(i+µ,2k+1) = PE(i,2k+1) ·PE(µ,2k+1)+

PE(i,2k) ·PE(µ,2k) (4.62)

The resulting benefit is that the encoding can somewhat model relative positions. That is, the
state at position i+µ can be described by starting with i and then appending it with the offset
µ.

When applying the sinusoidal positional encoding, one way is to use Eq. (4.50) to
concatenate xi and PE(i). In Vaswani et al. [2017]’s work, they instead assume PE(i) to be a
vector of the same size as xi (i.e., |PE(i)|= |xi|= de), and add PE(i) to xi, like this

xpi = xi+PE(i) (4.63)

This sinusoidal additive model has been the basis of many positional encoding approaches
[Dehghani et al., 2018; Likhomanenko et al., 2021; Su et al., 2021].

3. Learnable Positional Encoding

The result of sinusoidal positional encoding is a lookup table CPE ∈ Rmmax×de (where mmax

is the maximum sequence length we can choose)

CPE =

 PE(1)

...

PE(mmax)

 (4.64)

In this table, each row vector PE(i) corresponds to the embedding of a position i. These
vectors, as described above, are computed based on some assumptions and heuristic algorithms.
An alternative approach is to treat vectors of positions as parameters of the model and learn
them as usual. In this case, both word embeddings and position embeddings can be trained in
the same manner. See Chapters 2 and 3 for more information about learning word embeddings
in neural language models.

One last note on positional encoding. What we have shown in this section can broadly
be characterized as an absolute positional encoding paradigm: a position is described by its
location in a coordinate system. Another concept that is worth exploring is relative positional
encoding [Shaw et al., 2018]. For example, we can extend Eq. (4.48) to define the distance

11One can derive these by taking

sin(α+β) = sin(α) · cos(β)+cos(α) · sin(β) (4.59)

cos(α+β) = cos(α) · cos(β)− sin(α) · sin(β) (4.60)
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between two positions i and j

PE(i, j) = |i− j| (4.65)

In this case, the positional encoding is no longer an attribute of the i-th input but some
representation of the distance relative to a reference position j. In fact, most of the methods
for relative positional encoding are variants on a theme in which positions are described by
their pair-wise relationships. This forms the basis of several models of this type as we will see
in Chapter 6.

4.5 Examples

Both recurrent and convolutional models have been successfully used in numerous applications.
Here we discuss a few of the interesting examples. While these models are mostly basic, they
form the foundations of many state-of-the-art systems.

4.5.1 Text Classification

To illustrate how sequence models could be used, we first consider the text classification
problem in which we assign one of some pre-defined classes to a text. It can be extended to
cover a broad range of problems in NLP, including classifying news texts, flagging sentiment
sentences, identifying spam emails, detecting fake comments, and so on.

In text classification we are interested in selecting the best class from a set C, given a word
sequence w1...wm:

ĉ = argmax
c∈C

Score(c,w1...wm) (4.66)

Here Score(c,w1...wm) measures how well a class c is predicted for the input sequence
w1...wm. Here we map the sequence of words to the sequence of word vectors (or word
embeddings), that is, w1...wm→ x1...xm. Assuming Score(·) is a probabilistic function that
describes the distribution of the classes, we can reformulate the problem as

ĉ = argmax
c∈C

Pr(c|w1...wm)

= argmax
c∈C

Pr(c|x1...xm) (4.67)

The central issue here is the modeling of Pr(c|x1...xm). We define Pr(c|x1...xm) by
following the general encoder + predictor framework, as follows

• The input x1...xm is represented as a feature vector H ∈ Rdh by using an encoder

H = Encoder(x1...xm) (4.68)
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Figure 4.10: A CNN-based text classifier [Kim, 2014]. The input is a sequence of word
vectors. A convolutional layer involving multiple filters is used to extract features in different
dimensions. A pooling layer is used to reduce the number of features for representing the input
text, leading to a low-dimensional feature vector H. The prediction conditions on H and is
made by using a standard Softmax layer.

• H is fed to a standard Softmax layer to predict the class distribution

Pr(·|H) = Softmax(H ·Uc+bc) (4.69)

where Uc ∈ Rdh×|C| and bc ∈ R|C| are model parameters.

Encoder(·) is exactly the same thing we discussed in the preceding sections. There are,
therefore, many encoding models that are applicable here. For example, consider the CNN-
based encoder presented in Kim [2014]’s work. Kim [2014]’s model is based on a single
convolution layer involving dh filters. The application of a filter produces a set of features,
each being associated with a position of the sequence. Since we want a single vector for
representing the entire sequence, a pooling layer is added so that the number of features for
each filter is reduced to one. Then, for any c, the probability Pr(c|H) can be computed trivially
according to Eq. (4.69). See Figure 4.10 for an illustration of this classifier.

To train such a model, we just need to optimize it on some loss, and, as mentioned several
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times in this book, one of the most common methods is to minimize the cross-entropy loss
using gradient descent. Also, we can use regularization to improve the training of CNNs. More
details about these techniques can be found in Chapter 2.

Note that while the model described here is quite “simple”, it is among the most effective
models known for text classification. There are, of course, improvements to this kind of
classifier. Examples of such systems include deep CNNs [Conneau et al., 2017b], character-
based CNNs [Santos and Gatti, 2014; Zhang et al., 2015], recurrent CNNs [Lai et al., 2015],
and so on.

4.5.2 End-to-End Speech Recognition

Speech recognition is a task of taking a sequence of acoustic signals and mapping it to a
sequence of words or characters (call it a transcription) [Reddy, 1976; Rabiner and Juang,
1993]. Since the original input is an acoustic waveform over the time domain, it is common to
transform it into a sequence of waveform fragments (call them frames). Typically, a frame
is represented as a feature vector, denoted by xi. This is achieved by using either feature
functions in signal processing [Davis and Mermelstein, 1980; Picone, 1993; Campbell, 1997]
or learnable embeddings [Chorowski et al., 2019; Schneider et al., 2019]. Regarding the output,
speech recognition systems generally do not produce words. Instead, they produce sequences
of transcription units (or transcription labels), e.g., phonemes, characters, sub-words, etc.
In this subsection we assume that the output of a speech recognition system is a sequence of
English letters, denoted by y1...yn ∈ V n

y . The alphabet Vy consists of normal English letters
(a− z), numbers (0−9), spaces (⟨sp⟩), periods (⟨pe⟩), and other punctuation marks. As with
most modern speech recognition systems, we add a blank symbol ϵ to the alphabet in order to
indicate the null output.

The goal here is to find a string ŷ1...ŷn for a given input sequence x1...xm, so that

ŷ1...ŷn = argmax
y1...yn

Pr(y1...yn|x1...xm) (4.70)

This model is relatively difficult compared to the classification model described in the
previous subsection, as the output can be an arbitrary string, rather than a class in a predefined
class set. The string generation problem leads to two difficulties. First, we need some
mechanism to model Pr(y1...yn|x1...xm) for an exponentially large number of pairs of input
and output sequences. Second, in practice y1...yn is often much shorter than x1...xm (i.e.,
n <m), and so we need some mechanism to align a long sequence to a short one. However,
we do not need to consider these difficulties in the stage of representing the input sequence,
and can still encode the input sequence x1...xm in the same way as other sequence models.
Specifically, we represent x1...xm in the following form

h1...hm = Encoder(x1...xm) (4.71)

The encoder can be RNNs, CNNs, or more advanced models (such as Transformer). Here
we consider the encoder architecture used in Graves et al. [2013b] and Graves and Jaitly
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[2014]’s work. It is a multi-layer bi-directional LSTM model. We skip the details of this model
without loss of continuity, as the reader may be already familiar with it in Sections 4.2.3, 4.2.4
and 4.3.2.

Having obtained the sequence representation H= h1...hm, a softmax layer is used to map
each hi ∈ Rdh to a distribution of transcription labels, given by

Pr(·|hi) = Softmax(hi ·Us+bs)

where Us ∈ Rdh×|Vy| and bs ∈ R|Vy| are model parameters. Pr(·|hi) ∈ R|Vy| is a probability
distribution over Vy, and the probability of transcription label li at position i is simply Pr(li|hi).
We can then write the probability of a label sequence in the form

Pr(l1...lm|H) =
m∏
k=1

Pr(lk|hi) (4.72)

This formulation looks simple. We can appeal to the argmax operation to find the most
probable label sequence as usual. However, l1...lm cannot be straightforwardly used as a
system output, because it often contains many duplicate and blank symbols. To “post-process”
l1...lm, we first merge the sub-sequence of labels to a single label when they are the same, and
then remove the blank symbols. For example, consider a label sequence

s s ϵ e e ϵ ϵ e ⟨sp⟩ y ϵ o o u

By merging “s s”, “e e”, and “o o”, we have

s ϵ e ϵ ϵ e ⟨sp⟩ y ϵ o u

Then, we remove all ϵ and obtain

s e e ⟨sp⟩ y o u

The above sequence is what we would call a transcription. Obviously, different label se-
quences can correspond to the same transcription. Let B(y1...yn) be the set of label sequences
corresponding to y1...yn12. We now turn to the following form of the transcription probability
(see Figure 4.11 for an illustration)

Pr(y1...yn|x1...xm) =
∑

l1...lm∈B(y1...yn)

Pr(l1...lm|H) (4.73)

A problem with this model is that the number of the sequences in B(y1...yn) grows
exponentially with n (and m). Fortunately, there are very efficient methods for comput-
ing

∑
l1...lm∈B(y1...yn)

Pr(l1...lm|H). See [Graves et al., 2006] for a dynamic programming

12B(y1...yn) may contain label sequences of arbitrary lengths. However, if we restrict input to the sequence
x1...xm, then each sequence in B(y1...yn) is of length m.
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Figure 4.11: An end-to-end speech recognition architecture. The input of the system is
a sequence of acoustic signals that are represented as a sequence of feature vectors (i.e..,
x1...x14). These feature vectors are taken by a bi-directional LSTM encoder. The output
of the encoder is a sequence of contextualized representations (i.e., h1...h14) which is then
fed into a softmax layer for generating a distribution of labels at each position. We can then
draw a sequence of labels from these distributions. We map each label sequence to a form of
final output by eliminating duplicate symbols and blank symbols. An output of the system
corresponds to a number of label sequences, and the probability of the output is the sum of the
probabilities of these label sequences.

algorithm for solving this problem.

Note that Eq. (4.73) is also known as a form of connectionist temporal classification
(CTC) [Graves et al., 2006]. It is one of the most widely used methods for training end-to-end
speech recognition and speech translation systems. One of the merits of CTC is that it allows
us to align any label sequence to a transcription in a very simple and efficient way. It is easy to
make use of CTC in training a speech recognition system. Suppose there is a set of pairs of
input sequence and transcription, denoted by S. A common training objective is to maximize
the likelihood of these transcriptions given the corresponding inputs, written as

θ̂ = argmax
θ

∑
(y1...yn,x1...xm)∈S

logPr(y1...yn|x1...xm;θ) (4.74)

where Pr(y1...yn|x1...xm;θ) is the probability computed via Eq. (4.73), and θ is the parameters
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of the model.

When testing on new data, we search for an optimal transcription as in Eq. (4.70).
This process, also known as decoding, generally involves optimized search algorithms and
pruning techniques. For example, we can use the 1-best label sequence instead of all possible
label sequences to obtain an approximation to Eq. (4.73), that is, Pr(y1...yn|x1...xm) =

maxPr(l1...lm|H). This leads to an efficient decoding method, called Viterbi decoding,
which has been extensively used in speech recognition and machine translation [Lopez, 2008].
For more details about the decoding of sequence generation, we refer the reader to Chapter 5.

4.5.3 Sequence Labeling with LSTM and Graphical Models

Sequence labeling is a conceptually straightforward approach to classifying data in sequence.
In NLP, it has penetrated many sub-areas like word segmentation, part-of-speech tagging, and
chunking. Learning in these models consists of simply predicting a label in a label set Vy at
each position of a sequence. Ideally, we wish to perform a sequence of labeling actions based
on the entire input, given by

ŷ1...ŷm = argmax
y1...ym

Pr(y1...ym|x1...xm) (4.75)

where x1...xm is an input sequence (such as a sequence of word vectors), and y1...ym is a
label sequence in which each label yi corresponds to an input item xi.

As we have seen in this chapter, Eq. (4.75) perfectly fits the form of the sequence modeling
problem. As a first step we use an encoder to map x1...xm to a sequence of contextualized
representations, as follows

h1...hm = Encoder(x1...xm) (4.76)

We define Encoder(·) as a bi-directional LSTM model because it involves a memory
mechanism for modeling long-range dependencies in both left and right contexts. Hence, the
architecture of the encoder is the same as that used in the preceding subsection.

h1...hm can then be taken to be the input of a usual sequence labeling system (see Figure
4.12). The sequence labeling problem has been discussed in Chapter 1, and many models are
applicable to it. The simplest is the one that involves a classifier (such as maximum entropy
and SVM-based models) for predicting a label distribution for each hi. A problem with these
models is that the predictions are made independently. A more powerful approach is to use
graphical models to consider dependencies among predicted labels. For example, hidden
Markov models (HMMs) describe how a sequence of observations (i.e., x1...xm) is generated
given a sequence of variables (i.e., y1...ym). The key idea is to rewrite Pr(y1...ym|x1...xm)

using the Bayes’ rule and approximate Pr(y1...ym|x1...xm) by a product of simple factors.
However, these models require probability density functions of continuous variables (e.g.,
Pr(xi|yi)) which are difficult to estimate. This differentiates the use of HMMs in neural
models greatly from that in conventional models where all states and observations are discrete
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Figure 4.12: The BiLSTM + graphical model architecture for sequence labeling. The encoder
is a standard bi-directional LSTM model. Given a sequence of input feature vectors (i.e.,
x1...xm), it produces a new sequence of feature vectors for mapping the input to contextualized
representations (i.e., h1...hm). A CRF network is placed on h1...hm to predict a distribution
of label sequences. The optimal label sequence is the one that has the maximum probability.

variables13.
HMMs and their descendants can be viewed as instances of generative models. Another

type of model that has been commonly used to solve sequence labeling problems is discrimina-
tive models. One such model is conditional random fields (CRFs) [Lafferty et al., 2001]. The
CRF model features its ability to directly model the joint probability of the entire input and

13In HMMs, a sequence of variables can be viewed as a path of transiting over some states whose values are
chosen from a pre-defined set. In each transition from one state to another, something is observed (call it an
observation). By making some assumptions, we can approximate Pr(y1...ym|x1...xm) in the following fashion

Pr(y1...ym|x1...xm) =
Pr(y1...ym) ·Pr(x1...xm|y1...ym)

Pr(x1...xm)

≈
∏m

i=1Pr(yi|yi−1) ·
∏m

i=1Pr(xi|yi)
Pr(x1...xm)

=

∏m
i=1Pr(yi|yi−1)Pr(xi|yi)

Pr(x1...xm)
(4.77)

where Pr(yi|yi−1) is the transition probability of moving from yi−1 to yi (when i=1, we define Pr(yi|yi−1) =
Pr(y1|y0) = Pr(y1)), and Pr(xi|yi) is the emission probability of observing xi given yi. As the denominator
Pr(x1...xm) is a constant number for different y1...ym, it can be dropped in the argmax operation of Eq. (4.75),
as follows

ŷ1...ŷm = argmax
y1...ym

m∏
i=1

Pr(yi|yi−1)Pr(xi|yi) (4.78)

To estimate Pr(xi|yi), a possible solution is to take Pr(xi|yi) = Pr(yi|xi)Pr(xi)
Pr(yi)

, and use a neural network to
compute Pr(yi|xi).
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label sequences, and to allow us to make use of a variety of features to do this. Consider, for
example, the linear-chain CRF [Sutton and McCallum, 2012]. It defines Pr(y1...ym|h1...hm)

in the following form

Pr(y1...ym|h1...hm) =
Pr(y1...ym,h1...hm)

Pr(h1...hm)

=
exp(Score(y1...ym,h1...hm))

Z(h1...hm)
(4.79)

where Z(h1...hm) is a normalization factor, and has the form

Z(h1...hm) =
∑
y
′
1...y

′
m

exp(Score(y
′
1...y

′
m,h1...hm)) (4.80)

Score(·) is a score for weighting the sequence pair (y1...ym,h1...hm). It is given by
summing over the values of a set of feature functions {f1(·), ...,fJ(·)}, like this

Score(y1...ym,h1...hm) =

m∑
i=1

J∑
j=1

fj(yi,yi−1,hi) (4.81)

The outer loop of the summation corresponds to a visit to each position i. Given i, each
function fj(·) takes the current label yi, the previous label yi−1 and the current input vector hi,
and then returns the value of a feature.

This model is called linear-chain because it represents y1...ym as a chain structure where
each node yi, along with an observed variable hi, only connects to its preceding node yi−1 and
its following node yi+1

14, like this

y1 — · · · — yi−1 — yi — yi+1 — · · · — ym
| | | | |
h1 · · · hi−1 hi hi+1 · · · hm

In CRFs, it is assumed that the variables in the graph is only dependent on its neighboring
variables. Therefore, fj(yi,yi−1,hi) can be defined according to how yi is connected. There
are generally two types of features.

• Transition-like Features. This type of features models the connection between consec-
utive labels (yi−1,yi), given by

f1(yi,yi−1,hi) = u(yi−1,yi) (4.82)

where u(yi−1,yi) is an entry of a weight matrix u, indexed by (yi−1,yi).

• Emission-like Features. The second type of features models the connection between a

14CRFs can broadly be categorized as a type of undirected graphical models. They define a graph over a set
of observed variables and a set of unobserved variables. These variables are connected in some way that forms a
graph.
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label yi and the associated input xi, given by

f2(yi,yi−1,hi) = gi(yi) (4.83)

where gi(yi) is the entry yi of a vector gi ∈ R|Vy|. The vector gi represents the weights
of associating hi with each label in the form

gi = hi ·v (4.84)

where v ∈ Rdh×|Vy| is a weight matrix.

To simplify notation, we use yi (or yi−1) to denote the one-hot representation for a label15.
Then, substituting the above feature functions into Eq. (4.81) allows the scoring function to be
written in the form

Score(y1...ym,h1...hm) =
m∑
i=1

u(yi−1,yi)+gi(yi)

=
m∑
i=1

yi−1 ·u ·yTi +hi ·v ·yTi

=
m∑
i=1

(yi−1 ·u+hi ·v) ·yTi (4.85)

The right-hand side of the equation only involves simple algebraic operations on vectors
and matrices, allowing viewing this model as a normal neural network. In this way, it is
convenient to implement the sequence labeling system with various neural network toolkits.
We just need to stack a CRF network on an encoder network and learn the entire network
as usual. For example, one can train this system by maximum likelihood, and optimize the
loss function by gradient descent. Note that, as with other chain or lattice-based models, the
CRF network can be efficient because there are dynamic programming algorithms, called
the forward-backward methods, for computing both Score(y1...ym,h1...hm) and Z(h1...hm).
We refer the interested reader to related papers for more detailed discussions [Lafferty et al.,
2001; Sutton and McCallum, 2012].

One advantage of marrying the worlds of distributed representation and sequence labeling
is that we do not need to specify any feature templates as in conventional approaches. Instead,
the model is free to learn features that describe whatever input sequences are most effective at
optimizing some objective for sequence labeling. Such an architecture has been used as the
backbone model for several state-of-the-art systems [Huang et al., 2015; Lample et al., 2016;
Ma and Hovy, 2016; Li et al., 2020].

15In this case, yi ∈ R|Vy|, although it is originally used as a scalar.
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4.5.4 Hybrid Models for Language Modeling
As we have already noted, many sequence modeling problems can be dealt with by either RNN-
based or CNN-based models. Each of these two types of models has its own characteristics:
RNNs are originally designed for dealing with variable-length temporal data, and CNNs are
more effective in interpreting local information in restricted regions of input. Here we consider
a hybrid approach to language modeling for obtaining the benefits of both.

Recall from Section 4.2.1 that a neural language model is learned to predict a probability
distribution over a vocabulary, given some representation of the history words. Let w1...wm
be a word sequence to which we want to assign a probability. First, we represent each word
wi as a word vector xi. Then, an RNN model takes a word vector at a time and outputs the
probability

Pr(wi+1|w1...wi) = Pr(wi+1|x1...xi)

= Pr(wi+1|hi) (4.86)

where hi is the state of the recurrent unit at step i.
The process of converting words from symbols to continuous representations plays an

important role in this model. While it is common for practitioners to obtain xi from a word
embedding table, this approach treats each word as a whole and simply ignores its internal
structure. In consequence, it might be difficult to learn distinct vectors for rare words in
languages with large vocabularies [Bojanowski et al., 2017].

Here we consider a different way of representing words. The idea is simple: an additional
neural network is used to embed words [Ling et al., 2015; Kim et al., 2016]. Suppose every
word wi can be expressed as a sequence of characters. We represent these characters as
real-valued vectors ei,1...ei,leni via a character embedding table. Following Kim et al. [2016]’s
work, we can use a CNN to represent ei,1...ei,leni as a word vector in the following form

xi = CNN(ei,1...ei,leni ,W)

= Pooling(TanH(Conv(ei,1...ei,leni ,W))) (4.87)

where Conv(·,W) is a convolutional layer with parameters W, TanH(·) is a hyperbolic
tangent function, and Pooling(·) is a pooling layer.

Figure 4.13 shows the architecture of the model. We see that there is a hierarchical structure
behind this model, that is, characters form a word, and words form a sentence or phrase. On
a practical side, in many NLP tasks it is quite natural to consider the hierarchical nature of
language. We will see a few examples of making use of the relationships between different
levels of language representations in later chapters.

4.6 Summary
This chapter has introduced the recurrent and convolutional neural approaches to modeling
sequences of words. On one hand, recurrent neural networks are designed for dealing with
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Figure 4.13: A language model with character-aware word representations [Kim et al., 2016].
As a language model, the goal of this model is to compute the probability Pr(wi+1|w1...wi)
for each i. We represent each word wi as a real-valued vector xi. This vector is the output of a
CNN that takes a sequence of characters corresponding to this word. Then, the sequence of the
word vectors x1...xm is used as the input to an RNN + Softmax model. The model outputs
at each position i a distribution of words, where the entry wi+1 describes Pr(wi+1|w1...wi).
This hierarchical structure provides a multi-scale approach to language modeling: a sentence
is modeled by considering words, and a word is modeled by considering characters.

sequential data, and have broad applicability in NLP. To improve the modeling power of these
models, the memory mechanism is generally used. In particular, we have introduced LSTM
and GRU which are two popular types of models in dealing with long sequence problems. On
the other hand, while convolutional neural networks are commonly used to process vision data,
they are straightforwardly applicable to sequence modeling. We have seen that all these models
can be used in several language and speech processing tasks, including text classification,
speech recognition, sequence labeling, and language modeling.

The roots of modeling sequences of language units can be traced back to early work in
several different fields. For example, the process of generating a sequence of words can be
described as a Markov chain where the prediction of a word only depends on a limited number
of previous words [Markov, 1913]. This idea motivates the n-gram methods for sequence
modeling [Shannon, 1948], as well as hidden Markov models which later appeared and became
popular in modeling sequences of pairs of observed and unobserved variables [Baum and
Petrie, 1966; Baum et al., 1970]. These models and their variants lay the foundations of many
successful NLP systems in past decades [Manning and Schütze, 1999; Jurafsky and Martin,
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2008].
The idea of using neural networks in sequence modeling has also been investigated for

some time. One example to see how neural networks are developed and applied to sequence
modeling is speech recognition [Lippmann, 1989]. Most of the studies in the early days
of this research area try to either combine neural networks with existing models [Bourlard
and Wellekens, 1990; Bourlard and Morgan, 1993; Trentin and Gori, 2001], or address sub-
problems of speech recognition [Tank and Hopfield, 1987; Waibel et al., 1989; Lang et al.,
1990; Bengio, 1991]. However, scaling neural networks up in size was challenging because
training deep neural networks requires a lot of computation resources and data. The field had
long been dominated by approaches based on hidden Markov models and Gaussian mixture
models (GMMs), with a pipeline of several modules that require careful tuning. On the other
hand, while fully neural approaches were not state-of-the-art during that time, researchers were
aware of their potential in learning representations of acoustic inputs and freeing them from
hand-crafted features [LeCun and Bengio, 1995].

A dramatic shift from conventional pipelined approaches to end-to-end approaches comes
with the revival of neural networks in the 2000s [Hannun et al., 2014; Graves et al., 2013b].
The shift is so influential that a broad set of fields comes together like never before, e.g., in
computer vision and speech processing, the past ten years have, meanwhile, witnessed great
performance gains brought by very deep neural networks and end-to-end learning [Hinton et al.,
2006; Graves et al., 2013b; He et al., 2016; Krizhevsky et al., 2017]. In NLP, the paradigm
shift starts with the work on word embeddings [Mikolov et al., 2013; Pennington et al., 2014],
and continues as more powerful sequence representation models are developed [Vaswani et al.,
2017]. A simple approach to sequence modeling, though not discussed in depth in this chapter,
is compositional models [Janssen, 2012]. For example, we can use the bag-of-words model
to sum or average word vectors of a sequence. Despite the simple architectures of these
approaches, they achieve satisfactory results in many tasks, providing strong baselines for
further research on more advanced models [Conneau et al., 2018]. As the next step, applying
recurrent and convolutional neural models to sequence modeling is straightforward. This is
not surprising because these models are fairly well studied in other fields [Lipton et al., 2015;
Li et al., 2021b; Khan et al., 2020]. In particular, the LSTM model is well suited to deal with
long sequences and thus of great interest to NLP researchers [Sundermeyer et al., 2012; Huang
et al., 2015; Wu et al., 2016]. However, we are always on the way. Learning sequence models
is one of the most active research fields with no end in sight. There are many models that are
based on new architectures and show stronger performance in various tasks. More discussions
on some of these models can be found in Chapters 6, 7 and 8.

Note that the term sequence modeling is currently used in many different ways, referring
to different tasks. In many cases it is more common to use the terms encoding and encoder
to emphasize the process of mapping a sequence of symbols to a continuous representation.
As discussed in the previous sections, a benefit of viewing encoding as an individual task is
that we can learn a general representation model that is not dependent on where we apply it.
It opens the door to a wide range of pre-trained encoders for learning to represent various
types of data, such as text [Peters et al., 2018; Devlin et al., 2019], speech [Oord et al., 2018;
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Hsu et al., 2021; Chen et al., 2022], vision [Chen and He, 2021; Bao et al., 2021; He et al.,
2022], and combinations of them [Chuang et al., 2020; Li et al., 2021a; Kim et al., 2021]. A
closely related concept to text encoding is text embedding or sentence embedding [Conneau
et al., 2017a; Cer et al., 2018]. These can be broadly considered the same thing. In general,
an embedding model in NLP means a process of transforming the input text into a single
low-dimensional vector rather than producing sequences of contextualized vectors [Kiros et al.,
2015; Hill et al., 2016].

In many NLP problems, systems are not necessarily sequential on their input and/or output.
For example, in text classification, a system may take tree-structured input and produces a
label [Tai et al., 2015; Yang et al., 2016]. In this case we need some mechanism to encode
hierarchical structures. An alternative approach is to convert trees to sequences (or linearized
trees) so that we can directly make use of sequence models to handle non-sequential data
[Vinyals et al., 2015]. This is a great idea because it opens up the possibility of developing a
universally applicable encoder to represent various types of data if the input of the encoder can
be linearized in some way. For example, by representing an image as a sequence of patches,
sequence models can be directly applied to image classification, achieving state-of-the-art
results on several tasks [Chen et al., 2020; Dosovitskiy et al., 2021].
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