
Tong Xiao

Jingbo Zhu

Natural Language Processing
Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB

NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY

&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

June 12, 2025

Tong Xiao and Jingbo Zhu
June, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Chapter 5

Sequence-to-Sequence Models

天下万物之理，无独必有对。

According to the Principle of Heaven and Earth and all things, nothing
exists in isolation but everything necessarily has its opposite.

–《近思录》

Reflections on things at hand

朱熹/Xi Zhu (AD 1130-1200)
吕祖谦/Zuqian Lv (AD 1137-1181)

translated by Chang [1967]

In the language world, things often come in pairs. If there is a question, there would be an
answer; if there is a Chinese text, there would be an English translation; if there is a sentence,
there would be a parse of it according to some syntax. Many NLP systems are designed to
model the correspondence between these pairs, i.e., one of the two is taken as input and the
other is taken as output. These problems can be expressed in a form that we have encountered
several times, like this

ŷ = argmax
y

Pr(y|x) (5.1)

where x is an input variable, y is an output variable, and Pr(y|x) is a model that estimates how
likely y would be the true output given x.

This chapter is more interested in a particular family of problems where both x and
y are sequences of words, called sequence-to-sequence (or seq2seq) problems. Unlike
classification problems where the output ŷ is selected from a fixed set of classes, sequence-to-
sequence problems require producing an output from an exponentially larger set of sequences.
Obtaining ŷ in this case turns out to be a much more complex problem than the case of
classification, because we need more powerful models to describe Pr(y|x) and more efficient
search algorithms to solve Eq. (5.1).

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

4 Chapter 5. Sequence-to-Sequence Models

This chapter will discuss the well-known encoder-decoder architecture for sequence-
to-sequence modeling. Also, this chapter will discuss the attention mechanism which is an
improvement on this architecture. Both of these models lay the foundation of discussions of
several state-of-the-art models in the following chapters. Furthermore, this chapter will discuss
the search problem which plays an important role in sequence generation and related problems.

5.1 Sequence-to-Sequence Problems
We choose machine translation as an illustrative example throughout this chapter, because it
is now one of the most popular sequence-to-sequence tasks. We use x = x1...xm to denote
a sequence of words in one language (call it a source-side sequence or source sequence),
and use y = y1...yn to denote a sequence of words in another language (call it a target-side
sequence or target sequence). We can write Eq. (5.1) using the new notation, as follows

ŷ = argmax
y

Pr(y|x)

= argmax
y1...yn

Pr(y1...yn|x1...xm) (5.2)

As discussed in Chapter 1 and in [Brown et al., 1993], this formulation implies three
fundamental issues.

• Modeling. First, we need to define the form of Pr(y|x). In this chapter we show that
Pr(y|x) can be computed using a single neural network based on the encoder-decoder
architecture and the attention mechanism. Note that sometimes we just need a model for
discriminating “good” from “bad” target sequences. In this case, it is not necessary to
require the model to make probability sense, and we can take a discriminant function
instead.

• Training. Then, we need to learn parameters of the model Pr(y|x) given some training
data. As Pr(y|x) is expressed as a neural network, we can train it in a regular way:
we optimize some loss by gradient descent. See Chapter 3 for common approaches to
training neural networks. We will also discuss techniques that are tailored for specific
tasks in this and the following chapters.

• Search (or Decoding). Once we have learned a model, we will obtain ŷ by searching for
the target sequence that maximizes Pr(y|x). This is a computational challenge because
the number of candidate sequences grows with the maximum length of the sequences
and the size of the vocabulary. In Section 5.4, we will discuss efficient and effective
search methods for sequence-to-sequence problems, particularly for machine translation.

Many NLP problems that fit the form of Eq. (5.2) can fall into sequence-to-sequence
problems, and the research on these problems is largely motivated by discussions of the above
issues. Table 5.1 shows common examples of sequence-to-sequence problems taken from
the literature. When the target-side is a text, the problems can broadly be categorized as the
text generation problems, although a general text generation system does not require the

5.2 The Encoder-Decoder Architecture 5

Task Source Target

Machine Translation Text Translation
in One Language in Another Language

Question Answering Question Answer
Dialogue Systems Text/Speech for Conversation Response

Summarization Long Text Summaries of the Text
Text Simplification Text Simpler Text
Text Style Transfer Text Same Content

in One Style in Another Style
Grammar Correction Text with Errors Corrected Text
Speech Recognition Speech Transcription

Speech Synthesis Text Speech
Speech Translation Speech Translation

in One Language in Another Language

Table 5.1: Examples of sequence-to-sequence problems.

source-side to be sequential. In addition to language and speech processing, sequence-to-
sequence problems can be generalized to cases where the input and/or output of a system
are not naturally sequential. For example, image-to-text generation (or image captioning)
and text-to-image generation systems both involve dealing with images that are typically
represented as 2D data. By representing images as sequences in some way (such as sequences
of patches), sequence-to-sequence models are directly applicable to these tasks.

Historically, most systems in these tasks were developed somewhat independently, resulting
in different architectures, features, and training methods for different tasks. However, as shown
in this chapter, when we represent these models as neural networks and train them in an
end-to-end fashion, there appears to be a “universal” paradigm for all these problems. This is a
big change for the AI community because many research fields come together and systems can
be shared across them. We can gain some insight into the common nature of a broad variety
of problems, though there are many task-specific considerations in practice. In the following
sections, we will discuss some of the common threads among sequence-to-sequence models.

5.2 The Encoder-Decoder Architecture
In this section we discuss the encoder-decoder architecture and a simple neural machine
translation model based on this architecture.

5.2.1 Encoding and Decoding
From a supervised learning viewpoint, we would ideally like to learn a model from a number
of sequence pairs such that any source-side sequence can be mapped to the corresponding
target-side sequence. However, learning the mapping between sequences of discrete variables

6 Chapter 5. Sequence-to-Sequence Models

is typically a problem of learning from high-dimensional data. It inevitably suffers from the
curse of dimensionality, making the modeling and training difficult.

One approach to learning such a mapping is to divide the problem into “simpler” sub-
problems. We assume that there is a low-dimensional representation shared by x and y,
denoted by H. Then, the mapping x→ y can be achieved by mapping x to H and then to
y. Formally, given a source-side sequence x, we map it to the representation H by using an
encoding system (call it an encoder)

H = Encode(x) (5.3)

Then, we map H to the target-side sequence y by using a decoding system (call it a
decoder)1

y = Decode(H) (5.4)

This architecture, also known as the encoder-decoder architecture, is widely used in recent
sequence-to-sequence systems (see Figure 5.1 for an illustration). It is easy to see that the
form of Eq. (5.3) is the same as those of the sequence models mentioned in Chapter 4, and so
there are many encoding models to choose from, such as bi-directional LSTM. The goal of the
decoder is to produce a “best” target-side sequence given the representation of the source-side
sequence. Like classification models, the prediction is made by first producing a distribution
over all possible sequences, and then selecting the one with the maximum probability. As such,
we can re-define Decode(·) as a probability function

Pr(·|H) = Decode(H)

= Decode(Encode(x)) (5.5)

In other words, given a target-side sequence y, the decoder assigns it a probability

Pr(y|x) = Pr(y|H) (5.6)

Then, the optimal sequence ŷ is obtained by performing argmaxyPr(y|x) as in Eq. (5.2). In
many systems based on the encoder-decoder architecture, both Encode(·) and Decode(·) are
models constructed from neural networks. Thus, we can treat the sequence-to-sequence model

1It is important to distinguish between the concept of decoding (or decoder) used in conventional sequence-to-
sequence systems and that used in the encoder-decoder architecture. The two are often confused, though they are
different somehow. In many machine translation or speech recognition systems, decoding has the same meaning as
translation or transcription, that is, we recover the optimal y from x. As pointed out in Eq. (5.2), this process
involves a search over all candidate y. Therefore, the conventional use of decoding in these systems is to refer
to a search process (i.e., the argmax operation in Eq. (5.2)) [Koehn, 2010]. By contrast, in the encoder-decoder
architecture decoding means a process of recovering the target-side sequence y from the intermediate representation
H. It is all about modeling rather than searching. It is also worth noting that, while the term decoding (or decoder)
is used in different ways, it can be thought of as a process of mapping an encoded message back to the original
message in a communication system as defined in information theory [Shannon, 1948]. In this sense, the decoding
processes in these systems do the same thing as the word sounds like: convert something to its original form.

5.2 The Encoder-Decoder Architecture 7

Source-side sequence: x= x1...xm

Target-side sequence: y = y1...yn

.2 -1 6 5 .7 -2 Representation: H

Encoder
(H= Encode(x))

Decoder
(y =Decode(H))

Figure 5.1: The encoder-decoder architecture. In the case of sequence-to-sequence problems,
it transforms a source-side sequence x= x1...xm to a target-side sequence y = y1...yn. This
procedure involves two steps: x is first encoded as a representation H, and this representation
is then decoded to y.

as a single neural network and train it as usual, provided the entire model is some combination
of Encode(·) and Decode(·).

To apply the encoder-decoder architecture to a real-world task, we need to make a number
of design choices, such as the forms of H, Encode(·) and Decode(·). As a very simple
example, consider the task of regenerating an input word. We can define Encode(·) as a
feed-forward neural network that takes a word (in one-hot representation) and outputs a word
vector. In this way, H is a distributed representation of the word. Then, we define Decode(·)
as another feed-forward neural network that takes the word vector and generates a distribution
over the vocabulary. For training, we wish to learn a system that assigns the largest probability
to the input word. As discussed in Chapter 2, we can call this an auto-encoder which is a
special instance of the encoder-decoder architecture.

5.2.2 Example: Neural Machine Translation

Next we illustrate the application of the encoder-decoder architecture using a working example
— neural machine translation (NMT). We consider a well-known NMT model which uses
RNN or its variants for building both the encoder and decoder [Cho et al., 2014; Sutskever et al.,
2014]. The encoder of the NMT model is a standard RNN-based encoder. As the RNN-based
sequence model has been discussed in detail in Chapter 4, we just give a brief review of this
model here. Suppose that the source-side vocabulary is Vx and each source-side word xj is
represented as a one-hot vector in R|Vx|. Then, xj is transformed into a hs-dimensional vector

8 Chapter 5. Sequence-to-Sequence Models

(or word embedding)

xe
j = Embeds(xj) (5.7)

where Embeds(·) is the word embedding function. More details about word embedding
models can be found in Chapter 3.

The RNN model takes the sequence of the word vectors xe
1...x

e
m and produces a sequence

of RNN state vectors h1...hm. An RNN state vector hj ∈ Rdh is defined to be

hj = RNN(hj−1,x
e
j) (5.8)

Here RNN(·) is an RNN unit that summarises the information up to position j by combining
the previous state hj−1 and the current input xe

j in some way. Then, the last state hm can be
treated as a representation of the input sequence x1...xm, and we can use hm as the output of
the encoder, written as

hm = Encode(x1...xm) (5.9)

Figure 5.2 (a-b) shows an illustration of the encoding process. Note that the model
described above just involves a single-layer RNN. In practical systems, this framework can be
easily extended to include multiple layers and more powerful recurrent units (such as LSTM
units).

The decoder of the NMT model is a standard RNN-based language model, that is, we
predict the next word yi+1 given all previous words y1...yi. To incorporate the source-side
information into translation, a simple and straightforward method is to treat hm as the initial
state of the target-side RNN. Let ye

0 ∈ Rds be the word vector of the start symbol ⟨SOS⟩
(denoted by y0). The corresponding RNN state is given by

s0 = RNN(hm,ye
0) (5.10)

Here RNN(·) has the same form as the recurrent unit used in the encoder, but with different
parameters.

For i > 0, the state vector si ∈ Rds is given in the form

si = RNN(si−1,y
e
i) (5.11)

Then, si is fed into a Softmax layer to produce a distribution over the target-side vocabulary
Vy. The output of the Softmax layer is given by

Pr(·|y1...yi,x1...xm) = Pr(·|si)
= Softmax(siUy+by) (5.12)

where Uy ∈Rds×|Vy| and by ∈R|Vy| are the parameters of the Softmax layer. Pr(yi+1|y1...yi,x1...xm)

can be seen as the probability of predicting word yi+1 by conditioning on both the translated

5.2 The Encoder-Decoder Architecture 9

RNN RNN ... RNN

xe
1 xe

2 xe
m

h1 h2 hm(H)

RNN RNN ... RNN

Soft. Soft. Soft.

ye
0 ye

1 ye
n

s0 s1 sn

Pr(y1|y0,x) · · · Pr(yn+1|y0...yn,x)

(d) The decoder predicts the target-side words

RNN RNN ... RNN

xe
1 xe

2 xe
m

h1 h2 hm(H)

RNN

ye
0

s0

(c) The decoder takes the representation of x

RNN RNN ... RNN

xe
1 xe

2 xe
m

h1 h2 hm(H)

(b) The encoder represents x as H

RNN

xe
1

h1

(a) The encoding process starts

Figure 5.2: The encoding and decoding steps for an RNN-based NMT system. The encoder is
a standard RNN. The encoding process starts with the first source-side word and ends up with
the last source-side word. The last state of the RNN is taken to be the representation of the
entire source-side sequence (i.e., H= hm). The decoder is another RNN. At the first step, it
takes H from the encoder. After representing (ye

0...h
e
i ,H) as si at position i, a softmax layer

is built to predict the next word yi+1.

words y1...yi and the source-side sequence x1...xm. See Figure 5.2 (c-d) for an illustration of
the word predictions of a decoder.

Armed with this model of word prediction, we turn to a form that is frequently used in
papers on NMT, like this

Pr(y|x) = Pr(y0y|x)
= Pr(y0y1...yn|x1...xm)

= Pr(y0|x1...xm)Pr(y1...yn|y0,x1...xm)

=

n−1∏
i=0

Pr(yi+1|y0...yi,x1...xm) (5.13)

10 Chapter 5. Sequence-to-Sequence Models

Sometimes, this equation is also written in an equivalent form

Pr(y|x) =

n∏
i=1

Pr(yi|y0...yi−1,x1...xm) (5.14)

Here we assume that y always starts with y0 (i.e., ⟨SOS⟩) and so Pr(y0|x1...xm) = 1. In
many practical systems, it is also common to assume that y ends with a special symbol ⟨EOS⟩.
Therefore, we can modify this equation to involve ⟨SOS⟩ and ⟨EOS⟩ on both the source and
target-sides, as follows

Pr(y0yyn+1|x0xxm+1) = Pr(y0y1...ynyn+1|x0x1...xmxm+1)

= Pr(y0|x0...xm+1) ·
Pr(y1...ynyn+1|y0,x0...xm+1)

=

n∏
i=0

Pr(yi+1|y0...yi,x0...xm+1) (5.15)

where x0 = y0 = ⟨SOS⟩, xm+1 = yn+1 = ⟨EOS⟩, and Pr(y0|x0x1...xmxm+1) = 1.

Since Pr(y|x) can be expressed as a neural network, training this model is straightforward.
As described in Chapter 4, RNN-based language models are trained by using the cross-entropy
loss and gradient descent. NMT can use this same method for training model parameters. Once
we have obtained the optimized model, we can then use it to translate new sentences. Finding
the best translation for any given source-side sentence is a standard search problem. We will
discuss it in Section 5.4.

5.3 The Attention Mechanism

The NMT model discussed in the previous section was based on a fixed-length representation of
the source-side sequence. While this model is easy to implement, in many practical applications
it is unsatisfactory because a fixed-length vector might not be sufficient for representing a
variable-length sequence, especially when the sequence is long. This system will therefore
need some mechanism to couple the encoder and the decoder in a fine-grained manner. In this
section we discuss the attention mechanism by which a system can learn, for each word of the
target-side sequence, an adaptive representation that focuses more on important parts of the
source-side sequence.

In fact, the discussion here is related to the attention models in psychology because
translation is itself a cognitive process [Sternberg, 1996; Neisser, 2014]. The key idea behind
this type of model is natural: attention is generally concentrated on specific parts of the
data when we process something. This forms the basis of many state-of-the-art sequence-
to-sequence models, and the attention mechanism has been the de facto standard for the
development of these systems.

5.3 The Attention Mechanism 11

Encoder

xe
1 xe

2 xe
m

...

h1 h2 hm
...

Decoder

ye
0 ye

1 ye
n

...

Pr(y1|−) Pr(y2|−) Pr(yn+1|−)...

(a) An NMT system without attention

Encoder

xe
1 xe

2 xe
m

...

h1 h2 hm
...

Decoder

ye
0 ye

1 ye
n

...

Pr(y1|−) Pr(y2|−) Pr(yn+1|−)...

...

Attention

(b) An NMT system with attention

Figure 5.3: NMT architectures without (left) and with (right) the attention model. When the
attention model is not involved, a fixed-length representation is considered for generating
the entire target-side sequence. By contrast, when the attention model is involved, a new
representation is computed specifically for each target-side state so that the decoder can learn
to concentrate on different parts of the source-side sequence for predicting a target-side word.

5.3.1 A Basic Model
Recall that in the NMT model of the previous section, the encoder represents a source-side
word sequence as h1...hm, and the decoder represents a target-side word sequence as s1...sn.
The attention mechanism addresses the question of how a representation can be learned from
h1...hm so that this representation can explain the source-side sequence well for a given target
state si

2. From an information processing perspective, so long as we ignore the meanings of
h1...hm and si in NMT, attention can be thought of as a generic process of processing the
input information h1...hm by considering how each hj is related to the interest si. Figure 5.3
compares NMT architectures with and without the attention mechanism.

More formally, an attention model produces a linear combination of {h1,...,hm} in the
form

ci =
m∑
j=1

αi,j ·hj (5.16)

where αi,j is the attention weight that describes how much the model should rely on hj when

2Following the convention in machine translation [Brown et al., 1993], we use j to represent a position in the
source-side sequence, and use i to represent a position in the target-side sequence.

12 Chapter 5. Sequence-to-Sequence Models

computing ci for si. Sometimes ci is also called a context vector.

A common approach to computing attention weights is to normalize alignment scores in
the following form

αi,j = Softmax(a(si,hj))

=
exp(a(si,hj))∑m

j′=1 exp(a(si,hj′))
(5.17)

Here the alignment score a(si,hj) measures how strong hj is related to si. In general, a(si,hj)

can be defined in several different ways [Graves et al., 2014; Bahdanau et al., 2014; Luong
et al., 2015]. A comprehensive list of these functions can be found in survey papers on this
subject [Chaudhari et al., 2021]. Here we introduce some of the common ones.

• Dot-product Attention. One of the simplest methods is to measure the similarity
between hj and si. Thus, we can calculate the dot-product of the two vectors, as follows

a(si,hj) = sih
T
j

=

dh∑
k=1

si(k) ·hj(k) (5.18)

A variant of this model, called scaled dot-product attention, adds a scalar factor 1
β to

the right-hand side of Eq. (5.18), as follows

a(si,hj) =
sih

T
j

β
(5.19)

We will see an example of this model later in this section.

• Cosine Attention. Another commonly used similarity measure in vector algebra is the
cosine of the angle between two vectors, given by

a(si,hj) = cos(si,hj)

=
sih

T
j

∥si∥2 · ∥hj∥2
(5.20)

where ∥a∥2 = (a ·a)
1
2 is the Euclidean norm of the vector a.

• Weighted Dot-product Attention. This attention model involves a linear mapping of
the input vectors before performing the dot-product operation, given by

a(si,hj) = siWah
T
j (5.21)

where Wa ∈ Rdh×dh is the parameter matrix of the linear mapping. Both this approach
and the dot-product attention approach are also called multiplicative attention [Ruder,
2017].

5.3 The Attention Mechanism 13

• Additive Attention. In additive attention, the entries of the two vectors are summed in
some way. A widely-used form is given by Bahdanau et al. [2014]

a(si,hj) = vT
a TanH(siWs+hjWh) (5.22)

where Wh,Ws ∈ Rdh×da and va ∈ Rda are parameters. TanH(siWs+hjWh) pro-
duces a da-dimensional vector where each entry is a transformed weighted sum of the
entries of hj and si. It is followed by a dot-product with another weight vector va.

Now let us return to Eqs. (5.16-5.17) and rethink the role of attention weights. Eq. (5.17)
informally defines a “distribution” over h1...hm, written as

Pr(hj |si) = αi,j (5.23)

If we consider h a random variable that takes a value from {h1, ...,hm}, then αi,j can be
thought of as the probability of h= hj , conditioned on si, and Eq. (5.16) can be rewritten as

ci =

m∑
j=1

Pr(hj |si) ·hj

= Eh∼Pr(h|si)(h) (5.24)

In other words, ci can be viewed as an expected representation of the source-side sequence
given the target-side state si, that is, the expectation of {h1, ...,hm} under the distribution
Pr(hj |si). This provides a general framework for describing the way the decoder receives the
information from the encoder: the decoder is a receiver that determines how much information
is accepted from each sender. For example, in the NMT model of the previous section, there
is only one sender hm, and so the receiver receives all the information the sender sends.
By contrast, in the NMT model armed with the attention mechanism, there are m senders
{h1, ...,hm} and the receiver receives information according to a distribution of preferences
for the senders.

It is straightforward to introduce the attention model into the process of word prediction.
We modify our treatment of si so as to make use of both the source-side and target-side
information at each decoding step. We slightly modify the definition of si to include the
context vector corresponding to the previous state si−1, as follows

si = RNN(si−1,ci−1,y
e
i) (5.25)

Compared with the model of Eq. (5.11), the model of Eq. (5.25) takes ci−1 as an additional
input. Therefore, this model considers both the representation of the target-side words y1...yi−1

(as encoded in si−1 and ye
i) and the representation of the entire source-side sequence x1...xm

(as encoded in ci−1). Then, the distribution of target words at position i can be conditioned on
si as usual

Pr(·|y1...yi,x1...xm) = Pr(·|si) (5.26)

14 Chapter 5. Sequence-to-Sequence Models

Encoder

h1 h2 h3 hm
...

si−1

Decoder State
at step i

si

Decoder State
at step i+1

compute
Pr(yi+1|y1...yi,x1...xm)
(i.e., Pr(yi+1|si))

si−1

ye
i

ci−1 =
∑m

j=1 αi−1,j hj

ci−1

αi−1,1 αi−1,2 αi−1,3 ... αi−1,mαi−1,1 αi−1,2 αi−1,3 ... αi−1,m

weight αi−1,j of

connecting si−1 and hj

Figure 5.4: An attention model for NMT. Suppose we have obtained the representations
{h1, ...,hm} and the decoder state si−1 up to this point. We wish to obtain the decoder state at
the next step. To this end, we first compute attention weights by normalizing some attention
scores between si−1 and {h1, ...,hm}, and then compute a context vector ci−1 by summing
over {h1, ...,hm} with the attention weights. A new decoder state si is created by taking the
context vector ci−1, the previous state si−1, and the word representation ye

i . si will be used as
a condition for predicting a distribution of words at step i+1.

where Pr(·|si) is generally a Softmax layer. This process is illustrated in Figure 5.4.
We now have a model for computing Pr(yi+1|y1...yi,x1...xm). A brief outline of the key

steps of this model is given by

1. Encode the source-side sequence as h1...hm where hj =RNN(hj−1,x
e
j).

2. Repeat the following procedure from i= 1 to n−1.

5.3 The Attention Mechanism 15

a. Compute the alignment score a(si−1,hj) for each j.

b. Compute the attention weights {αi−1,1, ...,αi−1,m}
where αi−1,j =

exp(a(si−1,hj))∑m
j′=1 exp(a(si−1,hj′))

.

c. Compute the context vector ci−1 =
∑m

j=1αi−1,j ·hj .

d. Compute the target-side state si =RNN(si−1,ci−1,y
e
i).

e. Compute the distribution of target-side words Pr(·|si).

f. Compute Pr(yi+1|y1...yi,x1...xm) = Pr(yi+1|si) for a given word yi+1 (as in
training), or select the most likely word ŷi+1=argmaxyi+1

Pr(yi+1|y1...yi,x1...xm)

(as in testing).

In real-world systems, this basic model can be modified to better predict the target-side
words. For example, we can introduce fusion layers to combine si, ci−1, and ye

i before the
Softmax layer so that we have a deeper model for prediction [Bahdanau et al., 2014]. Another
commonly used approach is to stack multiple RNN layers on the target-side. In this case, one
can perform attention in either each layer of the stack [Wu et al., 2016] or the top-most layer
of the stack [Luong et al., 2015]. See Section 5.3.5 for more information about multi-layer
approaches to attention.

5.3.2 The QKV Attention
Because the attention mechanism is such a powerful approach, many variants have been
developed. Perhaps the most widely used approach is to reframe the attention problem as one
of matching a query in a set of key-value pairs. It lays the foundation for the well-known
sequence model — Transformer [Vaswani et al., 2017].

Here we assume that there are a number of key-value pairs {(k1,v1), ...,(km,vm)} and a
query q. The goal of the query-key-value attention (or QKV attention) model is to obtain a
value by considering the correspondence between the query and the keys. This is a standard
searching problem in database systems in which information is returned in its original form
or a new form when it matches the query. In the QKV attention, the result of searching is
not a single value in {v1, ...,vm} but instead a combination of these values. This is the key
difference of this attention model compared with the conventional models of searching.

Formally, the result of the QKV attention is defined to be

c =
m∑
j=1

αjvj (5.27)

where

αj = Softmax(
qkT

j

β
) (5.28)

is the attention weight. It turns out that the above model has precisely the same general form
as the model described in the previous subsection, and c can be simply viewed as a context

16 Chapter 5. Sequence-to-Sequence Models

vector.

While the basic form of the QKV attention is not something “new”, it can handle a variety
of problems by giving q, kj and vj appropriate meanings. Here we consider a more general
case where there are n queries {q1, ...,qn} and n output vectors {c1, ...,cn}. To simplify
notation, we use Q to denote a matrix where the i-th row vector is qi, like this

Q =

q1
...
qn

 (5.29)

Likewise, we can define K=

k1
...

km

, V =

v1
...

vm

, and C=

c1...
cn

. Then, the attention model

can be formulated as

C = Softmax(
QKT

β
)V (5.30)

Figure 5.5 shows an illustration of this equation. Note that Softmax(QKT

β) computes a
matrix of attention weights

Softmax(
QKT

β
) =

α1,1 ... α1,m
...

...
αn,1 ... αn,m

 (5.31)

where a row vector
[
αi,1 ... αi,m

]
represents a distribution over {v1, ...,vm}. We can then

expand Eq. (5.30) for easy understanding of the model

C =

c1...
cn



=


∑m

j=1α1,jvj

...∑m
j=1αn,jvj



=

α1,1 ... α1,m
...

...
αn,1 ... αn,m


v1

...
vm

 (5.32)

In sequence-to-sequence modeling, Q, K and V can be defined in several different
ways. To describe the correspondence between the source-side and target-side sequences, one

5.3 The Attention Mechanism 17

q1 q2 q3

Queries (e.g., {s1, ...,sn})

Q=

 q1

q2

q3


k1 k2 k3

Keys (e.g., {h1, ...,hm})

K=

 k1

k2

k3


v1 v2 v3

Values (e.g., {h1, ...,hm})

V =

 v1

v2

v3



q1

q2

q3

× kT
1 kT

2 kT
3 =

QKT

q3kT
3

β
Softmax

()
=

α

α3,3

v1

v2

v3

× =
c1
c2
c3

Returned Values C

ci =
∑3

j=1αi,jvj

Figure 5.5: The QKV attention model for batches of queries (Q), keys (K), and values (V). The
figure shows a direct implementation of the formula C= Softmax(QKT

β)V. Softmax(QKT

β)

computes the attention weights by normalizing a scaled dot-product of Q and KT. This results
in a matrix α in which a row vector describes weights of different values. By multiplying α
with V, we obtain a sequence of new values, each expressing a weighted sum of the original
values.

approach, called encoder-decoder attention, is to simply assume that

Q =

s1...
sn

 (5.33)

18 Chapter 5. Sequence-to-Sequence Models

and

K = V =

h1
...

hm

 (5.34)

In this case, C is a sequence of new representations of the source-side sequence given the
representations of the target-side sequence. As with the model described in the previous
subsection, each ci ∈C can be used to predict the word yi+1.

In addition to applying the model to sequence-to-sequence problems, another type of
approach is to regard it as a sequence model, that is, we use the QKV attention to represent a
sequence in one language. In this case, the QKV attention is also called self-attention which
forms the basis of the well-known Transformer model [Vaswani et al., 2017]. Consider, for
example, the sequence of states h1...hm. The self-attention model assumes that

Q = K = V =

h1
...

hm

 (5.35)

Then, the output of the model is a sequence of representations c1...cm. cj is a representation
which considers the correlations between hj and any other element of the input sequence. We
will see a more detailed discussion on this model in Chapter 6.

5.3.3 Multi-head Attention

Multi-head attention is an interesting extension to the above models. The key idea is to
perform attention in different sub-spaces of representations simultaneously rather than in a
single space of representations. To illustrate, consider a standard attention model that takes
sequences of source-side and target-side states and outputs a sequence of new states, written as

c1...cn = Att(h1...hm,s1...sn) (5.36)

where hj ,si,ci ∈ Rdh , and Att(·) is the attention function. We can map hj into τ vectors
{h[1]

j , ...,h
[τ]
j } via the following linear transformations

h
[1]
j = hjW

[1]
h (5.37)

...

h
[τ]
j = hjW

[τ]
h (5.38)

where h
[1]
j , ...,h

[τ]
j ∈ R

dh
τ , and W

[1]
h , ...,W

[τ]
h ∈ Rdh×

dh
τ .

Similarly, we can map si into τ vectors {s[1]i , ...,s
[τ]
i }. We then define τ feature sub-spaces

in which the attention function is performed independently. For the k-th feature sub-space, we

5.3 The Attention Mechanism 19

have

c
[k]
1 ...c[k]n = Att(h

[k]
1 ...h[k]

m ,s
[k]
1 ...s[k]n) (5.39)

The output of the model is a sequence of dh-dimensional vectors, each of which is obtained
by concatenating the vectors that are produced in all these feature sub-spaces, followed by a
linear transformation. This procedure is given by

c1 = [c
[1]
1 , ...,c

[τ]
1]Wc (5.40)

...

cn = [c[1]n , ...,c[τ]n]Wc (5.41)

where Wc ∈ Rdh×dh .

Following the notation used in the previous subsection, we can express a sequence of

vectors as a matrix, say, H=

h1
...

hm

 ∈Rm×dh , S=

s1...
sn

 ∈Rn×dh , and C=

c1...
cn

 ∈Rn×dh .

Using this notation, we rewrite Eq. (5.36) as

C = Att(H,S) (5.42)

To give a formal definition of multi-head attention, we first introduce the split and merge
functions. The split function divides each row vector of a matrix into a number of sub-vectors,
resulting in a 3D tensor. For example, splitting a m×dh matrix A with τ produces a τ×m× dh

τ

tensor3

Aheads = Split(A, τ) (5.43)

The merge function has a reverse form of the split function. Given a τ ×n× dh
τ tensor (say

Aheads), it merges each group of τ dh
τ -dimensional sub-arrays in the form

Amerge = Merge(Aheads, τ) (5.44)

Thus the form of multi-head attention is given by

C = CmergeWc

= Merge(Cheads, τ)Wc

= Merge(Att(Hheads,Sheads), τ)Wc (5.45)

Hheads = Split(HWh, τ) (5.46)

Sheads = Split(SWs, τ) (5.47)

3A a× b× c tensor can be treated as an array of a matrices whose shapes are b× c.

20 Chapter 5. Sequence-to-Sequence Models

H ∈ Rm×dh S ∈ Rn×dh

Project & Split
Split(HWh, τ)

Project & Split
Split(HWs, τ)

Hheads

∈ R3×m× dh
3

Sheads

∈ R3×n× dh
3

Att(Hheads,Sheads)

Cheads

∈ R3×n× dh
3

Merge & Project
Merge(Cheads, τ)Wc

C ∈ Rn×dh

Figure 5.6: An attention model with τ = 3 heads. First, we transform the input matrices
into multi-head representations, i.e., 3D tensors Hheads ∈ R3×m× dh

3 and Sheads ∈ R3×n× dh
3 .

These tensors are then taken by an attention model. The output of this model is a tensor

Cheads ∈ R3×n× dh
3 . We then merge the heads of Cheads, followed by a linear transformation.

Finally, we obtain n vectors of size dh, represented by an n×dh matrix.

where Wh,Ws ∈ Rdh×dh are the parameters. Split(HWh, τ) implements the projections of
Eqs. (5.37-5.38) for all hj . Likewise, we can have the meaning of Split(HWh, τ). Note that
here Att(·) is extended to deal with multi-head inputs. See Figure 5.6 for an illustration of this
model.

Multi-head attention is a very general approach that can be extended to many models. As a
simple example of this extension, consider the QKV attention model discussed in the previous
subsection. Let AttQKV(Q,K,V) be the attention function, and Q ∈Rdk ,K ∈Rdk ,V ∈Rdv

5.3 The Attention Mechanism 21

be the inputs. The multi-head QKV attention model is given by

C = Merge(AttQKV(Qheads,Kheads,Vheads))Wc (5.48)

Qheads = Split(QWq, τ) (5.49)

Kheads = Split(KWk, τ) (5.50)

Vheads = Split(VWv, τ) (5.51)

where Wq ∈ Rdk×dk ,Wk ∈ Rdk×dk ,Wv ∈ Rdv×dv ,Wc ∈ Rdv×dv are the model parameters.

One advantage of multi-head attention is that the feature sub-spaces will each describe a
different perspective of attention (call it an attention head or head for short). Therefore, the
concatenation of the outputs over these heads represents an ensemble of attention models that
deal with different parts of the data. This is similar to learning a group of models independently
and combining them to form a stronger model. This type of machine learning approach has
been proven to be useful in many problems [Opitz and Maclin, 1999; Zhou, 2012]. Note that
the multi-head attention models discussed here are parameterized by the linear projections
on the input and output spaces. The use of these linear projections is generally helpful as the
models become deeper and can describe more complex problems.

From an architecture design perspective, multi-head attention falls into a broad class of
neural networks — those involving a number of branches of layer stacks for dealing with
the same input (call them multi-branch neural networks). However, unlike conventional
approaches, which require different model architectures for different branches, the multi-head
attention approach is based on a single model for all the heads. As a result, such systems are
very efficient in practice because the attention procedure can run in parallel over these heads.

5.3.4 Hierarchical Attention

In many cases the underlying structure of an NLP problem is hierarchical. For example,
documents may have a multi-level structure: a document is made up of sentences, a sentence is
made up of words, and a word is made up of characters. It is therefore desirable to modify the
attention models to take into account the hierarchical nature of this data [Yang et al., 2016].

To illustrate, we consider a simple problem where the source-side has a 2-level tree
structure. Suppose the source-side sequence is a concatenation of a number of sub-sequences
{ū1, ..., ūT }. Each ūt yields a sequence of words

ūt = xp(t,1)...xp(t,|ūt|) (5.52)

where p(t, i) is the position of the i-th word of ūt in the entire source-side sequence x1...xm.
Then, the sequence x1...xm can be written as a composition of T sub-sequences:

x1...xm = xp(1,1)...xp(1,|ū1|)︸ ︷︷ ︸
ū1

xp(2,1)...xp(2,|ū2|)︸ ︷︷ ︸
ū2

... xp(T,1)...xp(T,|ūT |)︸ ︷︷ ︸
ūT

(5.53)

22 Chapter 5. Sequence-to-Sequence Models

Similarly, the encoder output h1...hm can be written as

h1...hm = hp(1,1)...hp(1,|ū1|) hp(2,1)...hp(2,|ū2|) ... hp(T,1)...hp(T,|ūT |) (5.54)

On the target-side, we assume that there are two sequences of state vectors: one for
placing the standard representations of the target-side sequence (i.e., s1...sn) and one for
placing higher-level representations of s1...sn. Let ϕ(i) denote the position in the higher-level
sequence of si, and s̄ϕ(i) denote the corresponding state vector. For each i, we thus have a pair
of state vectors si and s̄ϕ(i). In general, the relationship between si and s̄ϕ(i) comes from the
hierarchical structure of the problem. For example, si is the representation of a word, and s̄ϕ(i)
is the representation of the sentence the word belongs to4.

As before, our goal is to obtain a context vector ci for each target-side position i. Here
we still take ci to be a weighted sum of {h1, ...,hm}, as in Eq. (5.16). All that remains is
to specify the attention weight for each hj . As a first step we attend si to each ut. This is a
standard procedure. We just need to run the attention model on hp(t,1)...hp(t,|ūt|) instead of
h1...hm, given by

h̄t = Att(hp(t,1)...hp(t,|ūt|),si)

=

|ūt|∑
k=1

πi,k,thp(t,k) (5.55)

where πi,k,t is the attention weight restricted to ut. h̄t is a representation of ut, and so we have
a new sequence of representations h̄1...h̄T .

Then, we run the attention model on h̄1...h̄T to perform a second round of attention.
This is done by attending sϕ(i) to h̄1...h̄T . The output is a context vector for the hierarchical
attention model, given by

ci = Att(h̄1...h̄T ,sϕ(i))

=

T∑
t=1

γi,th̄t (5.56)

where γi,t is the weight of attending sϕ(i) to h̄t. Substituting Eq. (5.55) into Eq. (5.56), we can
write ci as

ci =

T∑
t=1

|ūt|∑
k=1

γi,tπi,k,thp(t,k)

=

m∑
j=1

αi,jhj (5.57)

While the notation in this subsection is a bit complicated, the form of the resulting model

4If the a-th sentence covers words from position b to c, then ϕ(b) = ϕ(b+1) = ...= ϕ(c) = a.

5.3 The Attention Mechanism 23

hp(t,1) ... hp(t,|ūt|)...hp(1,1) ... hp(T,|ūT |) si

sub-sequence ūt

Att(·)1st attention

h̄th̄1 h̄T sϕ(i)

Att(·)2nd attention

ci

Figure 5.7: A 2-level hierarchical attention model. The input sequence h1...hm is made
up of T sub-sequences. For each sub-sequence ūt, an attention model is used to produce
a context vector h̄t by considering the target-side state (i.e., si) and the representations of
the sub-sequence (i.e., hp(t,1)...hp(t,|ūt|)). The result of running this procedure on the T sub-
sequences is T level-1 representations h̄1...h̄T . They are then taken by a second attention
model to consider the attention between these representations and a higher-level target-side
state sϕ(i). This results in the context vector ci which describes the attention between the
target-side state si and the entire source-side sequence h1...hm.

is simple. We still combine {h1, ...,hm} in a linear manner but with new weights [Maruf
et al., 2019]. Computing αi,j describes a generative process in which we first determine the
weight of each sub-sequence and then determine the weight of each word in a sub-sequence, as
illustrated in Figure 5.7. See below for an alignment among different types of attention weight.

sequence h1 ... h|u1| h|u1|+1 ... h|u1|+|u2| h∑T−1
t=1 |ut|+1

... hm

weight (α) αi,1 ... αi,|u1| αi,|u1|+1 ... αi,|u1|+|u2| α
i,
∑T−1

t=1 |ut|+1
... αi,m

sequence hp(1,1) ... hp(1,|ū1|) hp(2,1) ... hp(2,|ū2|) hp(T,1) ... hp(T,|ūT |)

weight (γ) γi,1 ... γi,1 γi,2 ... γi,2 γi,T ... γi,T

weight (π) πi,1,1 ... πi,|ū1|,1 πi,1,2 ... πi,|ū2|,2 πi,1,T ... πi,|ūT |,T

24 Chapter 5. Sequence-to-Sequence Models

5.3.5 Multi-layer Attention

So far we have considered the case of single-layer attention — the output of the attention
models is written as a linear combination of the source-side representations. Now we extend it
in a natural way to multi-layer attention in which the single-layer attention procedure runs a
number of times for forming a “deeper” attention model.

To do this, a multi-layer neural network is created on the target-side. The model architecture
is regular. We stack a number of attention layers, each interacting with the source-side sequence
and feeding its output to the next layer. In an attention layer, we perform attention as usual.
For the l-th layer in the stack, this step takes the source-side sequence (denoted by h1...hm) as
well as the output of the previous layer (denoted by sl−1

1 ...sl−1
n), and produces a sequence of

vectors by

cl1...c
l
n = Att(h1...hm,sl−1

1 ...sl−1
n) (5.58)

where Att(·) could be any attention function described in this chapter.

Then, we create another neural network f(·) to give more modeling power to the model.
The output of the attention layer is thus defined to be

sl1...s
l
n = f(cl1...c

l
n,s

l−1
1 ...sl−1

n) (5.59)

f(·) can be designed in many ways [Sukhbaatar et al., 2015; Wu et al., 2016; Vaswani et al.,
2017]. A popular choice is to define f(·) as a feed-forward neural network with a residual
connection, given by

f(cl1...c
l
n,s

l−1
1 ...sl−1

n) = FFN(cl1...c
l
n) + sl−1

1 ...sl−1
n (5.60)

Substituting for the vectors cl1...c
l
n, using Eq. (5.58), the output of layer i is written in the

form

sl1...s
l
n = FFN(Att(h1...hm,sl−1

1 ...sl−1
n)) + sl−1

1 ...sl−1
n (5.61)

As with the models in the previous subsections, it is convenient to use a more compact
notation by expressing a sequence of vectors as a matrix. Thus this model can be given in
another form

Sl = FFN(Att(H,Sl−1))+Sl−1 (5.62)

Here FFN(·) is generally a multi-layer neural network with non-linear activation functions.
The identity mapping (i.e., +Sl−1) creates a direct path from the input to the output of the
layer, making it easier to train a deep neural network.

Figure 5.8 shows the architecture of this model. The attention model starts with the initial

5.3 The Attention Mechanism 25

H H S0 = S

Att(·)

FFN(·)

C1 Layer 1

S1H

Att(·)

FFN(·)

C2 Layer 2

S2

Figure 5.8: A 2-layer attention model. These layers take the same “key-value” pairs (i.e.,
H) but each takes a different “query” (i.e., Sl). The attention model is standard: context
vectors Cl are generated by taking both H and Sl. A feed-forward neural network is built
to transform Cl, followed by an addition of Sl. So this model can be formulated as Sl =
FFN(Att(H,Sl−1))+Sl−1. Sl is then used in the next layer as the query, that is, layer l+1
takes H and Sl, and repeats the above process. The output of the last layer can be viewed as a
deeper representation of H for S.

representation of the target-side sequence, that is, S0 = S =

s1...
sn

. If there are L attention

layers, then the final output will be SL.

5.3.6 Remarks

Above we considered a basic attention model and a series of refinements. The literature on
attention and related topics contains a wide range of methods for modeling how a system
concentrates on different parts of the input, as well as a wide range of applications of such

26 Chapter 5. Sequence-to-Sequence Models

models. This subsection provides discussions on some of the interesting issues.

1. Alignment vs Attention

Attention is related to a long line of research on alignment approaches to modeling the
correspondence between two groups of language units. In NLP, alignment is a very general
concept that is used to refer to several problems. For example, most statistical machine
translation systems are trained on bilingual texts which are annotated with word-to-word
alignment [Koehn et al., 2003; Chiang, 2005]. Word alignment models are thus developed to
generate links between words in two sentences [Vogel et al., 1996; Och and Ney, 2003; Taskar
et al., 2005; Dyer et al., 2013]. While the outputs of these systems are discrete variables, the
underlying models are mostly probabilistic and continuous. Therefore, the correspondence
between word alignment and the attention models discussed here is apparent because they are
both learned to assign a weight to each pair of words.

Note that despite the similarity between alignment and attention problems, their goals are
different. In most cases word alignment models are used as individual systems to produce
alignment results for downstream systems, whereas attention models are typically treated as
components of bigger systems and do not work alone (see Figure 5.9 for a comparison of these
models). This makes them fit different types of sequence-to-sequence systems in practice:
word alignment is one step of a pipelined system, and attention is some intermediate states of a
neural network.

Nevertheless, word alignment and attention are two related problems, and can help each
other in some cases. For example, one way to see how an attention model behaves is to induce
word alignments from it and measure the quality of these word alignments [Tu et al., 2016; Li
et al., 2019; Garg et al., 2019]. Also, systems equipped with the attention mechanism can be
guided by external word alignment resources [Mi et al., 2016b; Liu et al., 2016b].

2. Introducing Priors

As discussed in Section 5.3.1, the attention models implicitly define an attention distribution
over {h1, ...,hm} by which we can compute a weighted sum of these representations. This
distribution is expressed in terms of the alignment weights and is learned as part of a model.
In addition to learning the attention distribution in an end-to-end fashion, we can also define
it based on our knowledge about how we concentrate on different parts of a sequence when
reading it.

One approach is to directly impose some structure on the distribution. A simple example
is that we consider only a span of the sequence for attention and discard the rest. Let [ρi−
D,ρi+D] be a 2D+1 word window centered at position ρi of the source-side sequence. We
can connect si only to hρi−D...hρi+D and obtain a local context vector in the following form

ci = Att(hρi−D...hρi+D,si) (5.63)

This approach is also called local attention. The problem of determining ρi is similar
to the reordering problem in machine translation. For translation between languages with

5.3 The Attention Mechanism 27

meanwhile

, the station
has made

new progress

in comprehensive

constru
ction

.

同时

,

场

站

全面

建设

也

取得

了

新

成绩

.

(a) A heat map of word alignments

meanwhile

, the station
has made

new progress

in comprehensive

constru
ction

.

同时

,

场

站

全面

建设

也

取得

了

新

成绩

.

(b) A heat map of attention weights

Figure 5.9: Heat maps of a word alignment model and an attention model for a pair of Chinese
and English sentences. The heat maps are represented as shaded grids in which each cell
describes the correspondence of a pair of Chinese and English words. This correspondence
is shown on a color scale ranging from white denoting a weight of 0 to pure blue denoting a
weight of 1.

28 Chapter 5. Sequence-to-Sequence Models

similar word orders, it is common to assume that the translation is monotonic and ρi is linear
with respect to i [Koehn, 2004], e.g., ρi = ⌊m i

n⌋ or ⌈m i
n⌉. An alternative method is to use a

neural network to predict a relative position in the source-side sequence (denoted by ri) [Luong
et al., 2015]. ρi can then be defined to be ⌊mri⌋ or ⌈mri⌉.

In another thread of research, a new distribution is derived by combining the original
attention distribution and some prior distribution. The simplest such distribution takes the form
of linear interpolation

P̃r(hj |si) = η ·Pr(hj |si)+(1−η) ·Prior (5.64)

where Prior is the prior, and η is the interpolation coefficient. When η = 1, it is a standard
attention model. By contrast, when η = 0, the attention is completely dependent on the prior
[You et al., 2020].

The prior can be chosen in many ways. A simple choice is to assume Prior to be a
Gaussian distribution Gaussian(µ,σ2). This makes the model well explained: the attention
is concentrated on some point of the sequence and decreases its strength as we spread the
attention from this point. To determine the mean and variance of the Gaussian distribution, we
can use the same technique described above, say, we develop two neural networks to compute
them respectively.

The interpolation can also be considered an intermediate step of computing the attention
distribution. For example, consider the QKV attention discussed in Section 5.3.2. The
interpolation can be placed on the query-key dot-product [Yang et al., 2018a; Guo et al., 2019].
To this end, we can modify Eq.(5.28) in the following form

αj = Softmax(
qkT

j

β
+ηPrior)

= Softmax(
sih

T
j

β
+ηPrior) (5.65)

As
qkT

j

β (or
sih

T
j

β) is not constrained in [0,1], Prior is re-scaled by a hyper-parameter η.

Sometimes, priors arise in the context where the knowledge of attention comes from
external sources. As discussed above, incorporating word alignments into attention models is
one of the simplest ways to do this. The idea can be extended to make use of more structural
information, such as fertility and coverage [Cohn et al., 2016; Feng et al., 2016; Tu et al.,
2016], or more task-specific constraints, such as monotonic alignments between input and
output sequences [Raffel et al., 2017; Chiu and Raffel, 2018]. Also, as with syntactic machine
translation systems, parse trees can be used to bias the process of attention as an auxiliary input.
For example, dependency trees are a widely used source of information in modeling word
correspondence for either sequence-to-sequence [Chen et al., 2018] or sequence modeling
problems [Zhang et al., 2020b; Nguyen et al., 2020; Xu et al., 2021].

Since attention models can be computationally expensive in large-scale applications,
researchers have also developed efficient attention models by introducing more inductive

5.3 The Attention Mechanism 29

biases into model design [Tay et al., 2020]. This line of research can broadly be categorized
into efficient methods for NLP. In Chapter 6 we will present a discussion.

3. Attention in Memory Networks
As well as being of great interest in sequence-to-sequence systems, the attention mechanism
is extensively used in memory-based neural models [Sukhbaatar et al., 2015; Graves et al.,
2014; Kumar et al., 2016]. As discussed in Chapter 4, a memory system maintains a collection
of data items and allows users to retain and retrieve information. Given a query, it computes,
in some way, the match between the query and the key of each data item. This procedure is
also called addressing [Graves et al., 2014]. Such addressing is typically implemented by
first representing the query and the data item as real-valued vectors, and then calculating a
weight by considering some similarity between the two vectors. The result of the retrieval is a
weighted sum of all the data items. This formalism fits perfectly with the model of the QKV
attention discussed in Section 5.3.2.

Provided the attention mechanism and the memory mechanism are correlated, though not
from a psychology perspective, we can view attention as a process of retrieving information in
a memory (i.e., {h1, ...,hm}) for a given query (i.e., si). Thus we can interpret a sequence-
to-sequence system with the attention mechanism as follows. On the source-side, we store
information in a memory represented as a sequence of vectors h1...hm. Then, we retrieve
from this memory to recover step by step the source-side information on the target-side.

4. Beyond Sequence-to-Sequence Problems
While we restrict our discussion to the problem of transformation from one sequence to another
sequence in this section, the general approach of attention can be used to deal with other
problems. As mentioned in Section 5.3.2, and will be discussed in Chapter 6, a well-known
variant of this approach is self-attention. In self-attention, the QKV attention model is used
as a sequence model, and we have only one sequence of variables as input. As a result, the
outputs of this attention model can be treated as new representations of the input sequence.
Self-attention provides a general approach to modeling the interactions and dependencies
between input variables, and so can be applied to a variety of problems. For example, we
can concatenate h1...hm and s1...sn as a new sequence h1...hms1...sn, and run this model on
the sequence. In this way, self-attention is easily extended to a sequence-to-sequence model
[Lample and Conneau, 2019; Raffel et al., 2020]. Such an approach even works when h1...hm

and s1...sn represent different types of data. For example, we can use h1...hm to represent
a text and use s1...sn to represent an image. Then, we have a multi-modal model that fuses
textual and visual representations by performing self-attention on them [Chen et al., 2020].

Another approach to joint representation learning of sequences is to build multiple attention
models so that each sequence can learn from other sequences. An example of such models
is co-attention, which has been widely used in multi-modal language processing [Lu et al.,
2016]. For example, for the purposes of visual question answering (VQA), we wish to figure
out which parts of the image are related to a word of the question and to figure out which
words of the question are related to a given part of the image. To do this we will build two

30 Chapter 5. Sequence-to-Sequence Models

attention models: one for image-to-text attention, and one for text-to-image attention. The
outputs of both models can be thought of as joint representations for the image and text, and
thus can be used as features for answer prediction.

The attention models discussed in this section are order-independent for input. This is an
issue for dealing with sequential data, and can be addressed by encoding order information
in the inputs themselves (see Chapters 4 and 6). On the other hand, the simplicity of this
formulation makes these models general: the input data of the models needs not to be sequential.
As a result, the attention models can be directly applied to more complex data, such as graphs
[Veličković et al., 2018; Lee et al., 2019].

5.4 Search
Search is a fundamental issue in artificial intelligence, and plays an important role in many
NLP systems. The search problem is a computational challenge here because the number of
hypotheses in the search space increases exponentially with the length of the sequence and
the size of the vocabulary on the target-side. Exhaustive search in this case is simply slow.
Therefore, real-world systems often involve search algorithms or heuristics to ensure that
optimal or sub-optimal solutions can be found in an acceptable time.

For many practical sequence-to-sequence applications, the search problem, also called the
inference problem sometimes, can be formulated as the following equation

ŷ = argmax
y∈Ω

Score(x,y) (5.66)

where Score(x,y) is a model that measures the goodness of y given x.
This equation takes a slightly different form from that of Eq. (5.2). First, we use Score(x,y)

instead of Pr(y|x) as the goodness function. While a typical approach to training sequence-to-
sequence models is to maximize Pr(y|x) (or Pr(x,y)), we often need to consider task-specific
problems when performing inference on test data, for example the problem of length bias. It is
therefore common to involve other terms, as well as Pr(y|x), to define the objective function
for search (see Section 5.4.1). A second difference between Eq. (5.66) and Eq. (5.2) arises
from the form of the search space which is constrained to Ω. In general, Ω is a pruned search
space and contains a relatively small number of hypotheses. A common way to achieve this
is through the use of pruning techniques and advanced search algorithms (see Section 5.4.2).
In this section we consider solutions to these problems and some of the refinements. These
methods are largely motivated by the development of machine translation, but the discussions
here are general and can be considered in most text generation problems.

5.4.1 The Length Problem

Recall from Section 5.2.2 that the probability of the target-side sequence y given the source-
side sequence x can be written as a product of probabilities of each word yi given both the
generated words y0...yi−1 and x. Here we re-express Eq. (5.14) using simpler notation, as

5.4 Search 31

follows

Pr(y|x) =
n∏

i=1

Pr(yi|y<i,x) (5.67)

where y<i denotes the sequence y0...yi−1. This can be equivalently expressed in terms of log
probabilities

logPr(y|x) =
n∑

i=1

logPr(yi|y<i,x) (5.68)

Such a simple form of modeling has clear advantages as practical models for NLP, but
unfortunately, this leads to a preference for shorter target-side sequences over longer target-side
sequences. So it seems implausible to simply take Score(x,y) = Pr(y|x) or logPr(y|x) in
search because the result is very probably a short sequence, say, a sequence of one or two
words. This problem is a direct consequence of the inductive bias of the above model. From a
supervised learning perspective, another reason for this is that teacher forcing is used to train
the model: only a ground-truth target-side sequence is considered in training, and the model is
forced to output this ground-truth. By contrast, when applying this model to test data, we need
to explore a big set of y of different lengths, and to compare different y in terms of a function
that is different from the one learned on the training data.

This problem can be addressed through a technique called length reward, which gives
bonuses to longer sequences by adding a term to Score(x,y) [He et al., 2016]. As discussed
in Chapter 3, a commonly used form of length reward is given by

Score(x,y) = logPr(y|x)+λ ·n (5.69)

Here the length reward term is the length of y (i.e., n= |y|), weighted by the parameter λ > 0.
Improvements on this approach involve replacing n with an estimated sequence length by
using a length prediction model. For example, we can bound the reward in the following form
[Huang et al., 2017; Yang et al., 2018b]

Score(x,y) = logPr(y|x)+λ ·max(lp,n) (5.70)

where lp is a predicted length, and is generally defined to be a scaled length of x, that is,
lp = scalarp ·m.

If we substitute the log probability logPr(y|x) given by Eq. (5.68) into Eq. (5.69), we
obtain

Score(x,y) =
n∑

i=1

logPr(yi|y<i,x)+λ ·n

=
n∑

i=1

[logPr(yi|y<i,x)+λ] (5.71)

32 Chapter 5. Sequence-to-Sequence Models

Thus, we can interpret the length reward term as a reward to each word yi. Such a method has
been widely used in statistical machine translation (SMT) systems in which the rewards
are treated as features of a log-linear model [Koehn et al., 2003; Chiang, 2007]. To find an
appropriate value of λ, we can either use minimum error rate training [Och, 2003], following
the convention in SMT, or use gradient-based methods as in neural network-based systems
[Murray and Chiang, 2018].

A second approach to biasing search towards longer sequences, called length normaliza-
tion, is to divide logPr(y|x) by a length correction term, written in the following form

Score(x,y) =
logPr(y|x)
ncorrect

(5.72)

A simple example of this model is to define the length correction term as the sequence length
[Jean et al., 2015], like this

ncorrect = n

= |y| (5.73)

In this case, logPr(y|x)
n =

∑n
i=1 logPr(yi|y<i,x)

n can be viewed as the log-scale geometric mean
of the probabilities {Pr(yi|y<i,x)}5.

Another example is the one used in the GNMT system [Wu et al., 2016]. It takes the
exponential of the shifted, re-scaled n, as follows

ncorrect =
(5+n)α

(5+1)α
(5.76)

where the power α is a hyper-parameter and can be determined empirically on a tuning set. To
compare different methods, Table 5.2 shows a list of scoring functions for length reward and
length normalization.

In machine translation, the length problem is also closely related to the coverage problem
which has been discussed extensively in SMT. When translating a source-side sequence, we
wish to know how many times each word is translated. Then, we will say that over-translation
occurs (i.e., a longer translation) if some words are translated too many times, and that under-
translation occurs (i.e., a shorter translation) if some words are not sufficiently translated.
Traditionally, the coverage of a source-side sequence is described in terms of an m-dimensional

5Suppose {a1, ...,an} are n variables. Since

exp

(∑n
i=1 logai

n

)
=

(
n∏

i=1

ai

) 1
n

(5.74)

we have ∑n
i=1 logai

n
= log

(
n∏

i=1

ai

) 1
n

(5.75)

5.4 Search 33

Method Form of Score(x,y)

No Reward/Normalization Score(x,y) = logPr(y|x)
Length Reward Score(x,y) = logPr(y|x)+λ ·n

Bounded Length Reward Score(x,y) = logPr(y|x)+λ ·max(lp,n)

Length Normalization (Basic) Score(x,y) = logPr(y|x)
n

Length Normalization (GNMT) Score(x,y) = logPr(y|x)
(5+n)α/(5+1)α

Table 5.2: Scoring functions for length reward and length normalization. m = |x|, n = |y|,
and lp = scalarp ·m. λ and α are parameters.

vector
[
υ1 ... υm

]
, called the coverage vector. υj describes to what extent the source-side

word xj is translated. In SMT systems υj is a binary variable: 0 denotes untranslated, and
1 denotes translated. However, NMT systems have no such symbolic coverage mechanism.
Instead, they have models that compute the attention weights between xj and all the target-side
words. Therefore, one way to define what we mean by the coverage of a word is to consider
how strong xj connects to the target-side words. To do this, we extend υj to be a continuous
variable, given by

υj =
n∑

i=1

αi,j (5.77)

υj can thus be viewed as the “number of times” xj is translated, say, υj = 0 means that xj is
not translated at all, and υj = 1 means that xj is counted only once in translation. Consider the
example in Figure 5.9. For the source-side word建设, the corresponding attention weights are
shown below.

0.23 0.14 0.20 0.22 0.22 0.21 0.10 0.29 0.15 0.30 0.60 0.09

m
ea

nw
hi

le

, th
e

st
at

io
n

ha
s

m
ad

e

ne
w

pr
og

re
ss

in co
m

pr
eh

en
si

ve

co
ns

tr
uc

tio
n

.

建设

(j = 5)

υ5 =
∑12

i=1αi,5 = 2.75

We will say that建设is translated 2.75 times. It is possible to make use of {υ1, ...,υm} to
define how much the source-side sequence is covered in translation. A simple way to do this
is to develop a coverage score cp(x,y) by combining {υ1, ...,υm}. For example, the GNMT
system defines cp(x,y) in the following form

cp(x,y) = β

m∑
j=1

log(min(υj ,1)) (5.78)

34 Chapter 5. Sequence-to-Sequence Models

where β is a weight for the coverage model. The underlying idea is that when υj ≥ 1 the word
xj is assumed to be adequately translated; when υj < 1 the word xj is assumed to be lack of
translation. Thus cp(x,y) penalizes hypotheses in which some of the source-side words miss
parts of the translations. An improvement to this form is given by Li et al. [2018]

cp(x,y) = β
m∑
j=1

log(max(υj ,γ)) (5.79)

where γ is the hyper-parameter for truncation, giving a tolerance for under-translation. A
similar form was proposed in [Chorowski and Jaitly, 2017]

cp(x,y) = β

m∑
j=1

1(υj > γ) (5.80)

It just counts the number of times υj is greater than γ.
cp(x,y) can be easily introduced into search by adding it to Score(x,y). For example, the

GHKM-style scoring function is defined to be

Score(x,y) =
logPr(y|x)

(5+n)α/(5+1)α
+cp(x,y) (5.81)

In practice, modifying Score(x,y) is not the only way to address the length problem in
search. An alternative approach is to have architecture changes for modeling the problem
[Tu et al., 2016; Mi et al., 2016a; Sankaran et al., 2016; See et al., 2017; Malaviya et al.,
2018]. Note that, sometimes the length of the target-side sequence has been specified or
predicted in some way. In these cases, we can either develop models not dependent on the
auto-regressive assumption [Gu et al., 2018], or develop length-controllable text generation
systems for interesting applications [Rush et al., 2015; Kikuchi et al., 2016].

5.4.2 Pruning and Beam Search
There are many ways to define a search space. As a general concept in computer science, a
search space is often referred to as the domain of the problem that is searched. For sequence-to-
sequence problems, we can think of a hypothesis as a mapping from a source-side sequence x

to a target-side sequence y, and can think of a search space as a collection of such hypotheses6.
We can implement a search program by organizing hypotheses in an understandable way

so that we can look at the search space for the problem. Recall that in Eqs. (5.67-5.68)
we assign a probability of y given x by using a left-to-right factorization. A typical search
system maintains a set of hypotheses (or partial hypotheses) and builds up these hypotheses
from left to right7. The search procedure begins with an initial hypothesis set Z0 containing

6Here we use (x,y) to denote a hypothesis. When there are multiple mappings from x to y, a hypothesis can
be represented as (x,y,d) where d denotes the mapping. For example, if we transform x to y with a synchronous
grammar, there might be multiple derivations of grammar rules to do this.

7A hypothesis is called partial when the corresponding target-side sequence does not end with ⟨EOS⟩, i.e., an
incomplete target-side sequence. In this section we use the terms hypothesis and partial hypothesis interchangeably

5.4 Search 35

only one hypothesis z0 whose target-side is y0 by considering y0 = ⟨SOS⟩ is the start symbol
for all target-side sequences. Then, we extend this hypothesis set over a number of search
steps. Suppose we have a sequence of hypothesis sets Z0...Znmax where nmax is the maximum
number of search steps. At step i, we wish to extend each hypothesis by adding a new word vk
drawn from the vocabulary Vy. Let z.src be the source-side of z and z.tgt be the target-side
of z. Clearly, we have z.src= x for any z. Given a hypothesis zcur ∈ Zi−1, we can extend it
to |Vy| hypotheses {z1next, ...,z

|Vy|
next}, given by

{z1next, ...,z
|Vy|
next} = Extend(zcur,Vy)

=
⋃

vk∈Vy

Extend(zcur,vk) (5.82)

Here Extend(zcur,vk) is a function that extends the input hypothesis zcur with a word vk ∈ Vy.
The target-side of a resulting hypothesis is the concatenation of zcur.tgt and vk, written as8,

zknext.tgt = zcur.tgt◦vk (5.83)

These new hypotheses {z1next, ...,z
|Vy|
next} are then added to Zi. Figure 5.10 illustrates a

few steps in this hypothesis extension process. We see that all the hypotheses can easily be
represented as a tree structure. Here Zi corresponds to a set of the nodes at level i of the search
tree, and we simply have

|Zi| = |V | · |Zi−1| (5.84)

In other words, the size of Zi grows exponentially with the number of steps, say, |Zi|= |V |i.
Each hypothesis z is associated with a log probability logPr(z.tgt|z.src). logPr(z.tgt|z.src)

simply takes the form of Eq. (5.68), and can be defined in a recursive fashion

logPr(zknext.tgt|zknext.src) = logPr(zcur.tgt|zcur.src)+
logPr(vk|zcur.tgt,zcur.src) (5.85)

As an example, suppose zknext.tgt= y0...yi+1. The form of Eq. (5.85) becomes clear from the
following rewriting

logPr(y0...yi+1|x)︸ ︷︷ ︸
logPr(zknext.tgt|zknext.src)

= logPr(y0...yi|x)︸ ︷︷ ︸
logPr(zcur.tgt|zcur.src)

+logPr(yi+1|y0...yi,x)︸ ︷︷ ︸
logPr(vk|zcur.tgt,zcur.src)

=

i∑
k=1

logPr(yk|y<k,x)+ logPr(yi+1|y0...yi,x)

=
i+1∑
k=1

logPr(yk|y<k,x) (5.86)

because their forms are the same.
8We use a◦ b to denote the concatenation of two strings a and b.

36 Chapter 5. Sequence-to-Sequence Models

⟨SOS⟩
s : 0

z0

⟨SOS⟩ ◦An

s : −6.1×105

⟨SOS⟩ ◦A

s : −3.2×104

⟨SOS⟩ ◦ “

s : −1.6×107

⟨SOS⟩ ◦Because

s : −7.7×106

⟨SOS⟩ ◦ If

s : −3.9×106

...

...

⟨SOS⟩A◦ team

s : −5.0×1010

⟨SOS⟩A◦ taxi

s : −2.7×1012

⟨SOS⟩A◦ tail

s : −1.3×1012

⟨SOS⟩A◦ text

s : −1.0×109

⟨SOS⟩A◦ tiger

s : −3.2×1012

...

...

Step 1Step 0 Step 2
(Z1)(Z0 = {z0}) (Z2)

Figure 5.10: Illustration of hypothesis extension in first 3 steps. Each (partial) hypothesis is
represented as a box in which we show the corresponding target-side sequence and model
score. Each search step is associated with a hypothesis set Zi. We start with a hypothesis
z0 ∈ Z0 denoting the start symbol ⟨SOS⟩. In step i, we extend every hypothesis in Zi−1 by
trying to append every word from a vocabulary V (see words in red). This operation will result
in |V | · |Zi−1| hypotheses, forming the hypothesis set Zi. The hypothesis extension procedure
represents a breadth-first search algorithm: we create all the nodes (or search states) at depth
i−1 before moving to depth i. A tree structure is created along with this procedure, and a leaf
node of the tree can trace the search path back to the root node.

Given this probability, we can then compute z.score= Score(z.src,z.tgt), as in Section
5.4.1. This enables us to compare different hypotheses in terms of z.score. If a hypothesis ends
with the symbol ⟨EOS⟩, it is called complete and is not extended anymore. Once a hypothesis

5.4 Search 37

is complete, it is added to a max-heap9. We can dump the hypotheses with maximum model
scores from the heap. In general, the search procedure will stop if we find a certain number
of complete hypotheses. For example, we can stop searching when the heap is full (see more
discussions later in this subsection). The resulting search algorithm is described below.

Algorithm: A Simple Breadth-first Search Algorithm
SimpleSearch(x)

// Search for the best hypothesis given the source-side sequence x

1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. For each hypothesis zcur ∈ Zi−1

5. For each word vk ∈ Vy

6. znext = Extend(zcur,vk,x)

7. If znext.tgt ends with ⟨EOS⟩, then
8. Add znext to Heap

9. Else
10. Add znext to Zi

11. If Heap is full and/or other stopping criteria are met, then
12. Break all the loops
13. return Heap.Pop()

Extend(zcur,vk,src)

// Create a new hypothesis by appending a new word vk to the target-side of zcur
1. Create a new hypothesis znext
2. znext.src= src

3. znext.tgt= zcur.tgt◦vk
4. znext.prob= zcur.prob+logPr(vk|zcur.tgt,zcur.src) // see Eq. (5.85)
5. znext.score= score(znext.src,znext.tgt) // see Section 5.4.1
6. Return znext

If the hypothesis heap has an infinite capacity (sizeheap =∞), this algorithm will perform
an exhaustive search over a space of all hypotheses whose target-side lengths are up to nmax,
resulting in at most 1+ |Vy|+ |Vy|2+ · · ·+ |Vy|nmax =

|Vy|nmax+1−1
|Vy|−1 complete hypotheses. This

is an extremely huge search space which is computationally intractable in practice10. Therefore,
in practical systems it is common to prune the search space in order to make the search tractable.
In later parts of this subsection we will introduce two popular search algorithms, both adopting
pruning for efficient search.

9Given a max-heap a, we use a.Pop() to denote a function popping the top-1 item of a, and use a.PopAll() to
denote a function popping all the items of a.

10Consider, for example, a vocabulary size of 20,000 (|Vy|= 20,000) and a length limit of 20 (nmax = 20).
|Vy|nmax+1−1

|Vy|−1
would be 1.05×1086.

38 Chapter 5. Sequence-to-Sequence Models

1. Greedy Search

The greedy strategy is one of the most common concepts that one learns in textbooks on
algorithms. It is based on a heuristic that the globally optimal solution can be approximated by
making locally optimal decisions. Although such an approximation can only obtain a locally
optimal solution, this is sufficient for many practical applications and its low computational
complexity is a clear advantage.

Applying the greedy strategy to the search problem here is straightforward. In each
extension given step i, we only consider the best hypothesis up to i. To be more precise, for
any Zi, we only keep the hypothesis with the highest model score and discard the rest. The
output of each step of the greedy search is given by

zbest = argmax
znext∈Extend(Zi−1,Vy)

znext.score (5.87)

Here the function Extend(Zi−1,Vy) has the same meaning as that in Eq. (5.82), but operates
on a set of hypotheses, that is,

Extend(Zi−1,Vy) =
⋃

z∈Zi−1

Extend(z,Vy) (5.88)

Then, Zi is defined to be

Zi = {zbest} (5.89)

A greedy search algorithm for sequence-to-sequence problems is described below.

Algorithm: A Greedy Search Algorithm
GreedySearch(x)

// Search for the “best” hypothesis in a greedy manner
1. Create a hypothesis zbest
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. zbest.score=−∞
5. For each hypothesis zcur ∈ Zi−1

6. For each word vk ∈ Vy

7. znext = Extend(zcur,vk,x)

8. If zbest.score < znext.score, then
9. zbest = znext
10. If zbest.tgt ends with ⟨EOS⟩ and/or other stopping criteria are met, then
11. Break the loop
12. Zi = {zbest}
13. Return zbest

In each step of search, we have only one active hypothesis to extend (i.e., |Zi−1|= 1) and

5.4 Search 39

therefore need |V | extensions from which we select the best one for the next step of search.
The total number of times Extend(zcur,vk) is called is |V | ·nmax. Provided Extend(zcur,vk)

is a fixed-cost function, the time complexity of the algorithm is linear with respect to |V | and
nmax.

2. Beam Search
Beam search is a natural extension of the above 1-best greedy search algorithm. It is based
on the greedy heuristics as well, and is thus a type of greedy algorithm. The idea of beam
search is to keep at each step a number of the most promising hypotheses rather than the 1-best
hypothesis. A beam is a data structure that stores the best hypotheses we have generated so
far. The number of hypotheses in a beam is a predetermined parameter, called beam width or
beam size. Here we can simply view Zi as a beam, written as

Zi = {z1best, ...,z
sizebeam
best } (5.90)

where sizebeam is the beam size. z1best is the best hypothesis in the extension Extend(Zi−1,Vy)

(see Eq. (5.87)), z2best is the 2nd best hypothesis in Extend(Zi−1,Vy), and so on.
The following pseudo-code describes a beam search algorithm for sequence-to-sequence

problems.

Algorithm: A Beam Search Algorithm
BeamSearch(x)

// Search for the “best” hypothesis by considering a number of best candidates
// in each step
1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. Create a heap Beam with sizebeam elements
5. For each hypothesis zcur ∈ Zi−1

6. For each word vk ∈ Vy

7. znext = Extend(zcur,vk,x)

8. If znext.tgt ends with ⟨EOS⟩, then
9. Add znext to Heap

10. Else
11. UpdateBeam(Beam,znext)

12. If Heap is full and/or other stopping criteria are met, then
13. Break all the loops
14. Zi =Beam.PopAll()

15. Return Heap.Pop()

UpdateBeam(Beam,znext)

// Update Beam with a newly-generated hypothesis znext

40 Chapter 5. Sequence-to-Sequence Models

1. Add znext to Beam a

aBeam is a max-heap with sizebeam elements. So, if znext.score is lower than all the elements in the
heap, the heap will be left unchanged. In other words, Beam only stores top-sizebeam best hypotheses and
ignores the rest.

The function UpdateBeam(Beam,znext) is a direct implementation of histogram prun-
ing. Note that this general-purpose framework provides a simple way to implement other
pruning methods, and one can modify UpdateBeam(Beam,znext) as needed. For example,
an alternative method, called threshold pruning, retains the hypotheses whose differences in
model scores with the best hypothesis in Beam are below a threshold θbeam, say, we discard
znext in UpdateBeam(Beam,znext) if

znext.score < zbest.score−θbeam (5.91)

where zbest is the best hypothesis in Beam. Alternatively, we can consider a relative threshold
method [Freitag and Al-Onaizan, 2017], given by

znext.score < zbest.score ·θbeam (5.92)

Figure 5.11 shows a comparison of exhaustive search, (1-best) greedy search and beam
search. At one extreme, the optimal solution is guaranteed, but an exponentially large number
of search states are visited. At the other extreme, only the minimum number of search states are
visited, but the solution is sub-optimal. By contrast, beam search makes a trade-off between the
two methods. A larger beam size means more search effort and a higher possibility of finding
the optimum, while a smaller beam size means faster search and a higher risk of missing the
optimum. It is also possible to use a variable beam size to make a better trade-off during search
[Buckman et al., 2016; Post and Vilar, 2018; Kulikov et al., 2019].

An important problem related to these search algorithms is the problem of search errors.
In general, search errors can be defined in several different ways. Here we say that a search
error occurs if the search result is not the same as that of exhaustive search. Common sense
tells us that fewer search errors are helpful for finding “better” results. Thus, we often wish to
have a more desirable target-side sequence by enlarging the beam size. However, this is not
the case for some sequence-to-sequence systems. For example, a search with a larger beam
size may lead to a lower translation quality for neural machine translation systems [Koehn and
Knowles, 2017]. This inspires very interesting studies on the deterioration issue of large beam
search [Ott et al., 2018b; Yang et al., 2018b; Stahlberg and Byrne, 2019].

3. Stopping Criteria

Although the time complexities of the above algorithms are bounded by the maximum number
of search steps (i.e., nmax), it is important to have more efficient algorithms to stop searching as
early as possible, especially for latency-sensitive applications. This typically requires heuristics
to design additional criteria for stopping the search procedure at the appropriate point. Some
of these stopping criteria are:

5.4 Search 41

Step
1

Step
2

Step
3

(a) Exhausted Search

Step
1

Step
2

Step
3

(b) (1-best) Greedy Search

Step
1

Step
2

Step
3

(c) Beam Search

Figure 5.11: A comparison of exhaustive search, (1-best) greedy search and beam search. Balls
represent search states or partial hypotheses. Exhausted search explores all search states in the
search space. By contrast, greedy search keeps only the 1-best path of search states and prunes
away the rest. Beam search is a trade-off between them and keeps the most promising search
states in a beam in each step.

• If a given number of complete hypotheses are created, then we stop searching. For
example, in the beam search algorithm described in this subsection, the search program
terminates when we have sizeheap complete hypotheses. Another way to implement
this idea is to shrink the beam as the number of complete hypotheses increases. In
Bahdanau et al. [2014]’s system, once a new complete hypothesis is created, the beam
size decreases by 1. Therefore, the search program will terminate if the beam size is
reduced to 0.

• If every hypothesis at step i has a score lower than that of the best complete hypothesis in
Heap by some margin, then we stop searching. Suppose zbestinall is the best hypothesis
we have generated so far (i.e., zbestinall = Heap.Pop()). If every hypothesis znext at
step i satisfies

zbestinall.score−znext.score ≥ θall (5.93)

then we will finish the search process at this step. Here θall is a parameter. One
can specify it with an appropriate value through multiple tries. A simple choice is
θall = 0, which is employed in some of the popular sequence-to-sequence systems [Ott
et al., 2019]. Under some circumstances, such an early-stop strategy can guarantee the

42 Chapter 5. Sequence-to-Sequence Models

optimality of search [Huang et al., 2017; Yang et al., 2018b].

• If every hypothesis at step i has a score lower than that of the last complete hypothesis in
Heap by some margin, then we stop searching. This is a weak condition for early-stop.

• If the top ranked hypotheses at step i are all complete hypotheses, then we stop searching.
This is a more aggressive version of early-stop. For example, in Klein et al. [2017]’s
system, the search program terminates at step i if the top-1 hypothesis is a complete
hypothesis.

• If the search program consumes a certain amount of computing resources, such as a
certain number of floating-point instructions and a certain amount of wall clock time,
then we stop searching. In applications where computer performance is limited and
latency plays an important role, we will often be interested in this kind of stopping
criterion.

Sometimes, the search algorithm will not find any complete hypothesis until hitting the
length limit nmax. As a practical matter it might be easy in this case to force the best partial
hypothesis to be complete by adding ⟨EOS⟩ to its end.

Note that choosing appropriate stopping criteria reflects a trade-off between fast computa-
tion and accurate prediction at inference time (call it the speed-accuracy trade-off). While it
is not always the case that more time a search program takes could result in better results for a
sequence-to-sequence system, we would always want to know how close we can get to a better
solution to the problem by searching through a larger region of the search space. A discussion
of accurate search algorithms can be found in Section 5.4.4.

5.4.3 Online Search

So far in our general discussion of sequence-to-sequence problems, we have assumed that
all the source-side words come together as a whole and can be accessed in the entire search
process. However, in some practical applications, the inputs are received in order, and we wish
to make predictions conditioned on some of the observed inputs. An example of this is online
automatic speech recognition in which the system continually takes new acoustic signals and
at the same time outputs the corresponding transcription units.

Intuitively, we might think of the generation of the i-th target-side word as a problem of
mapping a prefix of the source-side sequence to the target-side vocabulary. We can formulate
this by introducing a function g(i) which denotes the maximum length of the prefix of x we
use in generating yi. Thus, the probability of yi given the entire sequence x and the previously
generated words y<i can be approximated by

Pr(yi|y<i,x) ≈ Pr(yi|y<i,x≤g(i)) (5.94)

where x≤g(i) denotes the sub-sequence x1...xg(i). Then, the log probability of the target-side

5.4 Search 43

sequence y given the source-side sequence x is written as

logPr(y|x) =

n∑
i=1

logPr(yi|y<i,x)

≈
n∑

i=1

logPr(yi|y<i,x≤g(i)) (5.95)

This equation frames a sequence-to-sequence problem as a prefix-to-prefix problem, that is,
the prefix y≤i is only dependent on the prefix x≤g(i). Inference for this model is simple. For
each i, the search system waits until all g(i) source-side words are received, and then extends
the hypotheses as usual. This can be done by reusing the algorithms described in the previous
subsection. For example, we can modify the beam search algorithm and obtain the following
online search algorithm.

Algorithm: An Online Beam Search Algorithm
OnlineBeamSearch(x,g(·))
// Online search in which the search is operated once an adequate number of input
// words are received. In each search step, a number of the most promising candidates
// are considered.
1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.tgt= y0
3. j = 0

4. i= 1

5. input= ϕ

6. While i≤ nmax do
7. If j < g(i), then // read a word from the input stream
8. input= input◦xj
9. Else // make a prediction at step i

10. // when g(i) input words are observed (stored in input)
11. Create a heap Beam with sizebeam elements
12. For each hypothesis zcur ∈ Zi−1

13. For each word vk ∈ Vy

14. znext = Extend(zcur,vk, input)

15. If input equals x and znext.tgt ends with ⟨EOS⟩, then
16. Add znext to Heap

17. Else
18. UpdateBeam(Beam,znext)

19. If Heap is full and/or other stopping criteria are met, then
20. Break all the loops
21. OutputPartial(Beam)

22. Zi =Beam.PopAll()

44 Chapter 5. Sequence-to-Sequence Models

23. i++
24. Return Heap.Pop()

OutputPartial(Beam)

// Output a partial result
1. Display the best hypothesis in Beam

An advantage of this system is that the output at step i is immediate once we have seen
x≤g(i). This results in an online sequence-to-sequence system in which input words arrive
in a continuous stream and predictions can be made just after a “sufficient” number of input
words are seen.

While the search problem here seems simple, much remains to be done to define g(i).
Clearly, g(i) is a monotonically non-decreasing function. As a simple example, we can define
g(i) =m for any i. This will make the above algorithm precisely the same as the standard beam
search algorithm that works with a complete input sequence. By contrast, in online sequence-
to-sequence tasks, we want g(i) to be as small as possible, and so we can start computation as
early as possible in inference. The simplest case of these is that the input and output sequences
are synchronous in some way. For example, an automatic speech recognition system assigns
each spectral frame a transcription unit. In this case, we have a simple correspondence between
inputs and outputs: m = n (i.e., |x| = |y|), and xi corresponds to yi. Then, we can simply
define g(i) = i, in other words, each time a new input arrives, we make a prediction.

A more complicated case is online sequence-to-sequence problems with reordering, such
as simultaneous translation, in which a target-side word may depend on source-side words
with long-range dependencies. A simple way to address this is to delay the predictions for
a number of steps. For example, the wait-k method forces each prediction to lag behind the
inputs by k words [Ma et al., 2019]. More formally, the wait-k version of the function g(i) is
defined to be

g(i) = min(m,k+ i−1) (5.96)

Here k is a hyper-parameter that controls how large a source-side context is considered in
predicting target-side words. When k =∞, it is the same as the standard search methods for
sequence-to-sequence inference. In simultaneous translation and related tasks, results are in
general satisfactory by using a small value of k. A comparison of different g(i) is shown in
Figure 5.12.

In some applications of online sequence-to-sequence problems, we may know when to
perform search and when to read inputs. For example, in interactive machine translation
[Casacuberta et al., 2009], the translation of a partial input sequence is triggered by some
behaviors of users (such as the action of pressing buttons). In this case, we do not need to
define g(i), but view it as an input variable of the model.

Note that while one can directly employ pre-trained sequence-level models for online
inference, developing such systems often requires additional training effort. A more principled
approach to online sequence-to-sequence modeling is to model the transformation from x to
y as a sequence of actions [Grissom II et al., 2014; Cho and Esipova, 2016; Gu et al., 2017;

5.4 Search 45

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

i
=
1

i
=
2

i
=
3

i
=
4

i
=
5

i
=
6

Standard Seq2Seq

1-to-1 Monotonic
Transduction

Wait-k

g(i) =m

g(i) = i (m= n)

g(i) = min(m,k+ i−1)

(a) Visualization of g(i).

x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Standard Seq2Seq

x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

1-to-1 Monotonic Transduction

x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Wait-k (k = 3)

(b) Action sequences.

Figure 5.12: Visualization (top) and action sequences (bottom) of different g(i) for a pair of
sequences (x= x1...x6,y = y1...y6). In an action sequence, a circled xj stands for the action
of reading a source-side word (xj), and a circled yi stands for the action of predicting the
probability of yi given x≤g(i) and y<i. Arrows here stand for dependencies between words.
Because y0 denotes the start symbol ⟨SOS⟩, it could be generated without dependencies on
any words.

Zheng et al., 2019]. For example, an action can be either a predict operation that performs
search at the current step, or a read operation that accepts a new input word. Then, we can
frame the task of designing the function g(i) as learning a policy to determine which action is

46 Chapter 5. Sequence-to-Sequence Models

taken given a source-side prefix x≤j and a target-side prefix y<i. And sequence-to-sequence
models can be trained on the states of these action sequences so that they can make better
predictions conditioned on part of the input. However, a discussion of training online sequence-
to-sequence models lies outside the scope of this section. We refer the reader to the above
papers for more details on these methods.

5.4.4 Exact Search
From a formal point of view, we would ideally like to develop a system with no search errors.
Although approximate search algorithms have been used successfully in many applications, it is
important to study model errors of these systems, and thus to focus on the problem in principle,
not just in practice. So developing exact search algorithms for sequence-to-sequence models
has long been an interesting topic in NLP research. However, the search problem for a simple
word-based machine translation system with n-gram language models has been found to be
an NP-hard problem [Knight, 1999]. Much of earlier research formulated the search problem
as classical combinatorial optimization problems, such as the linear programming problem
and the traveling salesman problem, and employed the corresponding solvers [Germann et al.,
2004; Zaslavskiy et al., 2009]. Additional research efforts explored exact search algorithms for
statistical machine translation systems by using the Lagrangian relaxation technique [Chang
and Collins, 2011; Rush and Collins, 2012] and finite-state automata [de Gispert et al., 2010;
Allauzen et al., 2014].

Unlike these methods, which are more or less dependent on the integration of n-gram
language models into sequence-to-sequence models, the models described in this chapter take
a simpler form. We begin with a basic model in which the scoring function score(x,y) is the
log probability logPr(y|x). Eq. (5.68) tells us that logPr(y|x) can be written as a sum of
word-level log probabilities, and logPr(y|x) becomes smaller as more target-side words are
generated (i.e., a larger n)11. In other words, logPr(y|x) is a monotonic decreasing function
with respect to the target-side length n: for any i, we have

logPr(y≤i|x) = logPr(y<i|x)+ logPr(yi|y<i,x)

≤ logPr(y<i|x) (5.97)

This is also called the monotonicity of the scoring function.
Then, by making use of the monotonic nature of model scores, we can develop a heuristic

to rule out hypotheses that would never be the best. Let zbestinall be the global best complete
hypothesis we have found. If a new hypothesis has a model score lower than zbestinall.score,
then we will not need to extend it. Thus we can explore a region that is significantly smaller
than the original search space, without loss of optimality. Note that zbestinall.score continues
to become larger in search. It will be more difficult to find a better hypothesis and more
hypotheses will be pruned away as the search process proceeds. See the pseudo-code below
for an exact search algorithm of the sequence-to-sequence model of Eq. (5.68).

11Consider logPr(y|x) =
∑n

i=1 logPr(yi|y<i,x). Since logPr(yi|y<i,x) has a non-positive value,
logPr(y|x) will be smaller or unchanged if n grows.

5.4 Search 47

Algorithm: An Exact Search Algorithm
ExactSearch(x)

// Search for the “best” hypothesis by making use of the monotonicity of the
// scoring function (score(x,y) = logPr(y|x)).
1. Create a priority queue (max-heap) Queue

2. Create a hypothesis zbest with zbest.score=−∞
3. While Queue is not empty do
4. zcur =Queue.Pop()

5. If |zcur.tgt|> nmax, then
6. skip zcur and continue the loop
7. For each word vk ∈ Vy

8. znext = Extend(zcur,vk,x)

9. bound= zbest.score // a lower bound on model scores
10. If bound < znext.score, then // admissible pruning
11. If znext.tgt ends with ⟨EOS⟩, then
12. zbest = znext
13. bound= znext.score

14. Else
15. Add znext to Queue

16. Return zbest

This is a general algorithm for exact search, and its search efficiency is greatly influenced
by the design of the priority queue [Meister et al., 2020]. For example, we can view score(x,y)

as the priority of each hypothesis in the priority queue, as in a max-heap12. Then, the resulting
algorithm performs a procedure of breadth-first-like search, since a hypothesis with a shorter
target-side sequence is more likely to have a higher model score and to be a top-ranked item
in the priority queue. For efficient search, however, we wish to find complete hypotheses as
early as possible, such that more unpromising hypotheses can be thrown away in the early
stage of search. To do this, we can bias the priority of a hypothesis towards a longer target-side
sequence. This provides a depth-first search algorithm which is more likely to find complete
hypotheses in a shorter time [Stahlberg and Byrne, 2019].

While the exact search algorithm becomes apparent by considering the monotonicity of
Pr(y|x), in practical systems, as discussed in Section 5.4.1, score(x,y) often has a more
complex form involving length reward or normalization, and so the monotonic property does
not hold. Fortunately, the assumption of monotonicity can be dropped at the expense of slightly
relaxing the lower bound on model scores for pruning. Here we define bound to be the lowest
model score that a hypothesis should have so that it can at best be extended to an equally
good hypothesis with zbest. For example, consider a simple word reward model described
in Eq. (5.69): Score(x,y) = logPr(y|x)+λ ·n. For a hypothesis znext, there are at most

12We can implement a priority queue using a max-heap.

48 Chapter 5. Sequence-to-Sequence Models

nmax−|znext.tgt| words we can predict to obtain a complete hypothesis. Suppose all these
nmax−|znext.tgt| words are predicted with a probability of 1. Then, the model score of the
resulting hypothesis (denoted by znew) will be given by

znew.score = znext.score+

nmax∑
i=|znext.tgt|+1

(log1+λ)

= znext.score+λ · (nmax−|znext.tgt|) (5.98)

Using this result, we can define bound as

bound = zbest.score−λ · (nmax−|znext.tgt|) (5.99)

An alternative way to derive the lower bound is to simply consider nmax times of word
reward, given by

bound = zbest.score−λ ·nmax (5.100)

This is a loose lower bound and leads to less pruning.

In the case of length normalization, we can do this in a similar way. For example, consider
the length normalization model Score(x,y) = logPr(y|x)

n , as in Eqs. (5.72-5.73). A lower
bound on admissible model scores is given by

bound =
Pr(znext.tgt|x)

nmax
(5.101)

In practice, such a lower bound can be defined in several different ways to guarantee the
optimality of search, depending on which model and search strategy are used in the sequence-
to-sequence systems [Huang et al., 2017; Stahlberg and Byrne, 2019].

We can easily apply these lower bounds to the above exact search algorithm by replacing
line 9 with Eq. (5.99) or (5.101). As a side effect, the search will explore more hypotheses and
thus be much slower.

5.4.5 Differentiable Search

We have addressed the search problem through the introduction of heuristic search algorithms
in which we try to minimize the scoring function on a set of sequences of discrete variables.
An alternative possibility is to relax these discrete variables to continuous variables and to
formulate the problem using the framework of continuous optimization [Hoang et al., 2017;
Kumar et al., 2021]. While we try to use a consistent notation throughout this book, it is
convenient here to introduce some new notation that is slightly different from that adopted in
the previous chapters. We will use a vector yw

i ∈ {0,1}|Vy| to denote the one-hot representation
of yi. Suppose the output at step i is a distribution over Vy, denoted by Pr(·|y<i,x). Then, we

5.4 Search 49

can write the log probability of yi at step i as a dot product of two vectors, like this

logPr(yi|y<i,x) = yw
i · logPr(·|y<i,x)

= yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.102)

where y<i = y0...yi−1 is represented as a sequence of one-hot vectors yw
0 ...y

w
i−1. As discussed

in Chapter 3, the right-hand side of the above equation means the selection of the entry yi of
the vector logPr(·|y<i,x) (or logPr(·|yw

0 ...y
w
i−1,x)).

Using this notation, we can write logPr(y|x) as

logPr(y|x) =

n∑
i=1

logPr(yi|y<i,x)

=

n∑
i=1

yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.103)

Provided we use logPr(y|x) as the objective function (i.e., score(x,y) = logPr(y|x)),
the search problem can be formulated as

ŷw
0 ...ŷ

w
n = argmax

yw
1 ...yw

n

n∑
i=1

yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.104)

This is equivalent to the standard form for inference of sequence-to-sequence models, given by

ŷ = ŷ0...ŷn

= argmax
y0...yn

Pr(y0...yn|x) (5.105)

Given Eq. (5.104), we can now relax each one-hot vector to a real-valued vector with a
constraint that the sum of all its entries is equal to 1, that is,

yw
i ∈ +R|Vy| (5.106)

s.t. ||yw
i ||1 = 1 (5.107)

In this way, yw
i can be informally treated as a |Vy|-dimensional embedding of yi, though

it has much more dimensions than the usual embeddings used in NLP. Now yw
i does not

correspond to a specific word in the vocabulary, but describes a distribution over the vocabulary.
In Hoang et al. [2017]’s work, yw

i · logPr(·|yw
0 ...y

w
i−1,x) is called the expected embedding

under the distribution logPr(·|yw
0 ...y

w
i−1,x). What is interesting about this formulation is that

Eq. (5.104) in fact defines a “new” task in which we try to maximize a sum of continuous
variables (i.e., a sum of n expected embeddings).

We can solve Eq. (5.104) by using the off-the-shelf toolkits in optimization. Since we
have a constraint that yw

i is a variable in a simplex13, it is straightforward to apply general

13Simplex is a term used in geometry. In a Euclidean space, a k-simplex is a k-dimensional polytope described

50 Chapter 5. Sequence-to-Sequence Models

constrained optimization algorithms to this problem. An alternative way is to use algorithms
that are designed to solve the optimization problem with simplex constraints. The details of
these algorithms can be found in many books on optimization.

A third choice of solving Eq. (5.104) is to formulate the constraints in the objective
function explicitly and to use gradient descent methods to optimize this function. For example,
Hoang et al. [2017] modify Eq. (5.104) and obtain a new form for optimization

ŷw
0 ...ŷ

w
n = argmax

yw
1 ...yw

n

n∑
i=1

Softmax(yw
i) · logPr(·|yw

0 ...y
w
i−1,x) (5.111)

Here we remove the simplex constraint from yw
i , and impose it on a new output that is produced

by a Softmax function.
Once we have obtained the optimal sequence ŷw

0 ...ŷ
w
n , we need to map each yw

i to a
unique word. A simple method is to take the word corresponding to the entry of yw

i with the
largest value. However, this may break the optimality of the solution because the condition
yw
0 ...y

w
i−1 is changed when these variables are discretized. A more practical method is to

perform optimization to predict the next word given a prefix, say, we fix yw
0 ...y

w
i−1 to the

one-hot representations of the optimal prefix, and maximize
∑n

k=iy
w
k · logPr(·|yw

0 ...y
w
k−1,x).

Then, we select the best word at position i and move on to the next position.
So far we have assumed that the search objective is derived from the log probability

logPr(y|x) and the length of the output is given in advance. To have a search over sequences
with different lengths, we can repeat the above optimization procedure for every n ∈ [1,nmax],
and select the sequence with the maximum score. This also makes it easy to introduce length
normalization and reward into search. We can ignore the length bias issue in each search
with a fixed n, and add the length models after optimization, that is, we leave the search
objective unchanged, but, in the final step, we select the best sequence in a set of candidates
with different n in terms of score(x,y).

5.4.6 Hypothesis Diversity
Multiple outputs are often required when one wants to rescore these outputs and/or interact
with the system. One of the most widely used methods is to use beam search to generate a
number of top-ranked hypotheses. For example, we can simply view the elements of Heap
as the k-best hypotheses in beam search (see Section 5.4.2). However, this approach suffers
from the problem that there is often little difference among the hypotheses in the beam, and

by a set of k+1 independent points {p0,p1, ...,pk}. This polytope is defined as a set of points

Pk-simplex = {a0 ·p0+a1 ·p1+ ...+ak ·pk} (5.108)

where

k∑
i=0

ai = 1 (5.109)

ai ≥ 0 for any i ∈ [0,k] (5.110)

5.4 Search 51

Rank Output

1 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for “The Price Is Right” when Bob Barker, 91, showed up to run his old show.

2 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker showed up to run his old show.

3 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker, 91, showed up to run the show.

4 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker, 91, showed up to run his show.

Table 5.3: 4-best outputs of a text summarization system on a sample in the CNN/Daily Mail
dataset (beam size = 4). We see that these texts differ only by a few words.

it is difficult to figure out which one is better though more options are available to users.
Table 5.3 shows the 4-best outputs of a text summarization system. We see that these texts
are fairly similar to each other. One reason for this phenomenon is that diverse hypotheses,
though probably with high model scores when completed, will be pruned away if they are
low-ranked in some stages of beam search. From a modeling perspective, we can interpret this
as a problem with the locally normalized models that we use here: every prediction is made
on an intermediate step of search, and there is no way for the following steps to escape if the
prefix is fixed [Murray and Chiang, 2018].

One approach to improving the hypothesis diversity is to give penalties to cases where the
hypotheses in the beam are less diverse [Li and Jurafsky, 2016; Vijayakumar et al., 2018]. A
simple example of such objective functions is given by

scored(x,y) = score(x,y)−λ ·dp (5.112)

It combines the original model score score(x,y) and a diversity penalty dp. dp can be defined
in a few different ways. An idea is to penalize hypotheses that are close in the search tree. For
example, one can define dp as the rank of a hypothesis in the set of its siblings that are extended
from the same parent hypothesis, and so the beam can spread its members over a larger
region of the space of hypotheses [Li and Jurafsky, 2016]. Another way to introduce diversity
measures is to consider the differences between the target-side sequences of the hypotheses
in the beam. For example, we can define dp as the average string similarity between a given
hypothesis and other hypotheses in the beam [Xiao et al., 2013].

The above idea can also be expressed as constraints imposed on the search procedure.
For example, we can constrain the beam to include only the hypotheses that are rooted at

52 Chapter 5. Sequence-to-Sequence Models

different parents in the last step [Boulanger-Lewandowski et al., 2013]. More precisely, for
each hypothesis zcur ∈ Zi−1, we seek the best next-step hypothesis by

ẑnext = argmax
znext∈Extend(zcur,Vy)

Pr(znext.tgt|x) (5.113)

The hypothesis ẑnext is then added to Zi. Note that this is essentially a sub-space method that
divides a space of hypotheses into sub-spaces of hypotheses, and collects results over these
sub-spaces. An intuition behind this method is that different sub-spaces can describe different
aspects of the problem, and so we can have diverse solutions.

Another approach to addressing the diversity issue is to perturb beam search by introducing
randomly generated hypotheses into the beam [Holtzman et al., 2020; Wiher et al., 2022].
One common way to do this is to choose some random words for extending a hypothesis, and
to add the extended hypotheses to the beam. In general, these words can be sampled from
the distribution Pr(·|y<i,x) over the entire vocabulary or its subset. Randomness can also
be added to the inputs of a system at test time. For example, one can express an input word
as a linear combination of its original embedding and the embedding of a word of a random
sequence drawn from the training data [Li et al., 2021]. In problems having many local minima,
adding random “noise” to search procedures is generally helpful, as we can explore more
diverse hypotheses and prevent the systems from getting stuck in certain regions of the search
space.

Instead of performing search using a single system, we can use multiple systems to obtain
diverse hypotheses. These systems can be built on either different architectures or different
hidden structures/configurations [He et al., 2018; Shen et al., 2019; Wu et al., 2020; Sun et al.,
2020]. Although methods of this type do not fall under the search framework that we have been
discussing, combining the results from multiple systems is generally helpful. The following
section will present a discussion on this issue.

5.4.7 Combining Multiple Models

From a machine learning point of view, ensembling are methods for addressing modeling
issues, not search issues. In this subsection, we discuss these methods because their implemen-
tations typically require modifications to the search modules, and we can gain some insight
into the resulting system by viewing it from the search perspective.

In machine learning, ensemble methods aim to make better predictions by combining
predictions of a number of constituent systems or component systems. The problem of
combining multiple systems has been discussed extensively in times when statistical models
emerged in NLP, and is sometimes called system combination methods for emphasizing
its practical use. For sequence-to-sequence models discussed here, a widely used form of
system combination is an average of predictions [Sutskever et al., 2014]. Suppose we have K

sequence-to-sequence models that have been trained. The log probability of the target-side
word yi given its left context y<i and the source-side sequence x can be defined by using the

5.4 Search 53

geometric average

logPr(yi|y<i,x) =
1

K

K∑
k=1

logPrk(yi|y<i,x) (5.114)

or alternatively by using the arithmetic average

logPr(yi|y<i,x) = log
1

K

K∑
k=1

Prk(yi|y<i,x) (5.115)

where Prk(yi|y<i,x) is the output of the k-th component system. These forms are so simple
that one can implement them for any sequence-to-sequence models without significant modifi-
cations to existing systems, and they have been used as the basis of many successful systems
in various evaluation tasks [Barrault et al., 2020; Akhbardeh et al., 2021].

A problem with prediction averaging is that all the component systems are required to
follow the same basic form of modeling (see Eq. (5.68)) and we need to have access to the
probabilities {Prk(yi|y<i,x)}. When we have only a set of black-box systems in hand, we
need to perform sequence ensembling. A common idea is to vote from the ensemble of the
sequences produced by the component systems. For example, one of the simplest ways to do
this is hypothesis selection [Hildebrand and Vogel, 2008], in which we simply select the “best”
sequence from the ensemble using some criterion. An alternative way of sequence ensembling
is to regenerate a new sequence differing from any of the original sequences [Matusov et al.,
2006; Rosti et al., 2007]. This typically requires a model that represents the sequences into a
compact representation (such as a lattice), as well as an additional search pass by which we
can find the best output in this new representation of hypotheses (such as lattice search and
rescoring) [Deoras et al., 2011; Stahlberg et al., 2016; Khayrallah et al., 2017].

Note that the ensembling of sequence-to-sequence models is related to the diversity issue
discussed in the previous subsection. It is often thought that component systems need to be
diverse for a better ensembling result, and so we need to build these systems in some way
that we can make them different [Sutskever et al., 2014; Zhou et al., 2017]. One of the most
popular methods is checkpoint ensembling. It takes a number of copies of a model at different
checkpoints during training, and combines these model copies via prediction averaging. This
method can be useful for alleviating the overfitting problem in practice. Also, different models
can be created from a base model under different settings. For example, we can build models
with different numbers of parameters on the basis of a backbone model. A more general
approach is to take models based on different architectures, although this is at the expense of
more development effort.

Another way to view sequence ensembling is that it provides a two-pass search scheme.
In the first pass of search, multiple systems are used to perform inference individually. Each
of these systems has its own bias for modeling and search, and explores different regions of
the search space. A hypothesis explored by one system might not be seen and evaluated by

54 Chapter 5. Sequence-to-Sequence Models

another system. The result of this pass is a diverse ensemble of hypotheses that are “optimal”
from some perspectives. In the second pass of search, we use this ensemble to define a new
space of hypotheses, and use a fine-grained model to search for the final result.

5.4.8 More Search Objectives

In this subsection, we consider more objective functions that can be applied to the search
problem.

1. Search with Future Scores

Most of the algorithms described in this subsection can be viewed as some optimizations of
best-first search algorithms [Meister et al., 2020]. As another example of best-first search, A*
search is widely considered to be a good solution to the general search problem. Vanilla A*
search requires that all states of search are sorted in every search step, which is intractable in
our problems. We therefore still consider beam search and greedy search for our discussion,
but use an A* search-like objective function instead. Specifically, given a search state (x,y≤i),
the A* search-like objective function can be defined as

scoreA*(x,y≤i) = g(x,y≤i)+h(x,y≤i) (5.116)

Here g(x,y≤i) is the reward of the path from the start state to (x,y≤i), and h(x,y≤i) is the
estimated reward of the “optimal” path from (x,y≤i) to the final goal. Because g(x,y≤i) and
h(x,y≤i) can have arbitrary forms, this framework is very general. For example, if we define

g(x,y≤i) = score(x,y≤i) (5.117)

h(x,y≤i) = 0 (5.118)

then scoreA*(x,y) is exactly the same as the objective functions discussed previously.
To make full use of this formulation, it seems natural to seek a function of future reward

or future cost. Ideally, we would like h(x,y≤i) to be able to compute how much additional
reward we can obtain if we extend (x,y≤i) to the best complete hypothesis. This is, however,
intractable because we need to explore all the hypotheses extended from (x,y≤i) and find the
best one. It is common practice to use a computationally cheaper model analogous to the real
future reward model. Conventional approaches rely on heuristics to define h(x,y≤i) [Koehn
et al., 2007], such as estimating the weights of the words that could be further generated. These
heuristics can be generalized to the knowledge of the model design of sequence-to-sequence
systems [He et al., 2017; Zheng et al., 2018]. A more general approach is to use a value-based
treatment of the problem [Ren et al., 2017; Li et al., 2017; Leblond et al., 2021]. We can
develop a policy that learns to predict the distribution of yi given x and y<i, and a value
function for this policy that learns to predict future rewards. Eq. (5.116) can therefore be
interpreted as a linear combination of the policy score of (x,y≤i) and the corresponding value.
Such a treatment of search objectives falls into the framework of value-based search, and has
been successfully employed in reinforcement learning [Silver et al., 2017].

5.4 Search 55

2. Search with Language Models
For a long time, language models played an important role in text generation tasks. For
example, statistical machine translation systems and automatic speech recognition systems
typically rely on large n-gram language models to produce fluent texts. While modern
sequence-to-sequence models are not required to have separate language models, applying
them to sequence-to-sequence search still makes intuitive sense for machine translation and
related problems.

Following the convention that a language model can be treated as a feature of a log-linear
(or linear) model [Och and Ney, 2002], the language model-augmented objective can be defined
as

scorelm(x,y) = logPr(y|x)+λ · logPr(y) (5.119)

This formulation does not involve length reward and normalization terms, but either of them
can be easily used as an additional feature of the model. In general, the language model
Pr(y) is trained solely on target-side sequences, enabling the use of large-scale monolingual
data in sequence-to-sequence models [Gulcehre et al., 2017]. Interestingly, it has been found
that current sequence-to-sequence models are strong language models themselves if they are
trained sufficiently, and a better way to make use of target-side data might be to use it to create
synthetic data, called data augmentation. An example of this is back translation in which we
use a backward translation system to translate target-side sentences to source-side sentences,
and then use this synthetic bilingual data as additional data for training a forward translation
system [Sennrich et al., 2016; Edunov et al., 2018]. In many tasks, such a simple method can
achieve significant improvements in translation quality, but this result questions the necessity
of using additional language models in neural machine translation.

Note that the model of Eq. (5.119) depends on our choice for the coefficient λ. For machine
translation, we are usually interested in a positive value of λ so that our system can produce
more fluent texts. By contrast, a negative value of λ means that we want some output that
is less frequent. For example, if λ = −1, then Eq. (5.119) can be written as the point-wise
mutual information of x and y

scorelm(x,y) = logPr(y|x)− logPr(y)

= log
Pr(x,y)

Pr(x) ·Pr(y)
(5.120)

This scoring function has been shown to be useful for generating more diverse outputs for
neural conversation systems [Li et al., 2016].

3. Minimum Bayes Risk Search
So far, our discussion of search objectives has focused on the use of the decision rule of
choosing the highest score hypothesis, called maximum a posteriori (MAP) search14. An

14In statistics, MAP is a method for inference of the parameters of a statistical model. Suppose we have a model
that describes the distribution of a variable x and the model is parameterized by θ. MAP seeks the optimal value of

56 Chapter 5. Sequence-to-Sequence Models

assumption behind this method is that the posterior probability Pr(y|x) (or the model score
score(x,y)) correlates with the true quality of outputs. In practice, this assumption leads to
several useful properties, e.g., the search system is easy to implement, and the objective of
search is consistent with that of training. However, there are some shortcomings with MAP
search, which causes researchers to consider more powerful methods. One problem with MAP
search is that the objective does not reflect the way one evaluates the system. The metrics
used in end-to-end evaluation of a system may have very different forms from Pr(y|x). A
second problem is that MAP is just a special case of the Bayesian treatment of determining
posterior probabilities. It provides a point estimate of θ with no uncertainty measure, and
is sometimes overconfident. In some applications, sequence-to-sequence models spread too
much probability mass across many different hypotheses [Ott et al., 2018a], and MAP may not
describe the major portion of the distribution.

Here we consider minimum Bayes risk (MBR) search that provides ways to introduce
evaluation measures into search, as well as ways to make use of the distributions over hypothe-
ses. The MBR method assumes a risk function on a pair of sequences, denoted by R(y,yr). It
computes the cost of replacing yr with y in terms of some evaluation metric. For example,
we can define the risk score to be 1−BLEU for machine translation. Then, the risk for y on
a set of sequences Ω is given by the expectation of R(y,yr) with respect to the distribution
Pr(yr|x)

Risk(y) = Eyr∼Pr(yr|x)R(y,yr)

=
∑
yr∈Ω

R(y,yr) ·Pr(yr|x) (5.124)

However, the summation over all possible target-side sequences is computationally infeasi-
ble. We therefore define Ω to be the k-best outputs or sampled outputs of a system [Eikema
and Aziz, 2020], denoted by Ωsystem. Then, we take score(x,y) =−Risk(y) and obtain the

θ by maximizing the probability of θ given x, written as

θ̂MAP = argmax
θ

Pr(θ|x) (5.121)

θ̂MAP is also called the mode of the posterior distribution of θ. For the MAP search problem here, we simply
denote θ by y and seek the mode of Pr(y|x).

As a Bayesian method, we can re-express the above equation using the Bayes’ rule

θ̂MAP = argmax
θ

Pr(x|θ) ·Pr(θ)
Pr(x)

= argmax
θ

Pr(x|θ) ·Pr(θ) (5.122)

where θ is treated as a variable having a prior distribution Pr(θ).

By contrast, MLE directly maximizes the likelihood function Pr(x|θ)

θ̂MLE = argmax
θ

Pr(x|θ) (5.123)

Thus, the MAP result can be viewed as an estimation of θ that considers both MLE of x given θ and the prior of θ.
Note that MAP and MLE will be equivalent if Pr(θ) is a uniform distribution.

5.5 Summary 57

following objective for MBR search

ŷ = argmax
y

−Risk(y)

= argmin
y

∑
yr∈Ωsystem

R(y,yr) ·Pr(yr|x) (5.125)

This model is very general and applies to a wide range of NLP problems in which one
needs to search for an optimal hypothesis in a large set of candidates [Goodman, 1996; Goel
and Byrne, 2000; Kumar and Byrne, 2004]. It allows for flexible forms of risk functions,
for instance having various factors considered in evaluating hypotheses. MBR search has
recently been of interest to NLP researchers as they are found to be effective in eliminating the
biases caused by MAP search [Müller and Sennrich, 2021; Freitag et al., 2022]. In addition to
providing a formulation of search objectives, MBR methods can be used for training sequence-
to-sequence models, and are thought to be solutions to the discrepancy issue between objectives
of training and evaluation [Shen et al., 2016].

5.5 Summary
In this chapter, we attempted to provide an overview of sequence-to-sequence modeling which
can serve as the basis for many NLP systems. Sequence-to-sequence modeling is a very
rich area of research, and has been widely discussed in different disciplines, even beyond
NLP. This chapter is not a review of all the literature on this subject (this would be a big
project), but focuses on some of the core methods and ideas. We started with an introduction
of sequence-to-sequence problems, as well as the encoder-decoder architecture which lays the
foundations for most of the state-of-the-art sequence-to-sequence systems. As an illustration of
the application of this architecture, we considered the problem of neural machine translation,
and built a simple neural machine translation model using the basic knowledge we have learned
so far.

We also presented the attention mechanism and a series of refinements. If we look back
to the past few years, we will find that exploring attention models is the next natural step
in developing sequence-to-sequence models. While these models are well known for their
application and impressive performance in machine translation, they have dominated the NLP
community. There is also great interest in attention models in some other sub-fields of AI, such
as computer vision [Borji and Itti, 2012; Xu et al., 2015; Jaderberg et al., 2015] and speech
processing [Chorowski et al., 2015; Chan et al., 2016; Bahdanau et al., 2016]. The result is
that the past few years were an exciting time for people in these areas.

Sequence-to-sequence models are so successful that we try to put everything in the same
pocket. Not only have we developed powerful sequence-to-sequence models to deal with very
general problems, but current research is forced to be unifying. An example is that Transformer,
a self-attention-based sequence-to-sequence model, has become one of the fundamental models
for many tasks ranging over different types of data, from textual to visual and acoustic data. It
can even be extended to deal with multimodal problems which are sometimes more challenging.

58 Chapter 5. Sequence-to-Sequence Models

This makes things more interesting and exciting: an improvement to one model can be used
to improve systems in a variety of tasks. And we are seeing a significant change in our
research paradigm in which the NLP and machine learning fields are marrying and results
in NLP research are becoming more influential. However, on the other side of the coin is
that we are making much room for some of the problems but leaving less room for the others.
In recent NLP conferences, we can see many, many papers talking about how to train big
sequence-to-sequence models and apply them to different text generation tasks, but there are a
relatively small number of papers on parsing. There have always been debates on this over the
past few decades, for example, what and how much prior knowledge do we need to build an
NLP system? [Church, 2011; See, 2018] Getting involved in such debates is simply beyond the
discussions in this chapter. Fortunately, NLP research promises to continue to be diverse and
active, and we can always hear and learn from both sides of the debates. For example, there
are interesting findings that the neural sequence models can learn some linguistic properties
from data, and linguistic structures can help system design. In Chapter 6, we will see a few
examples.

The “bias” of research focus also exists on the machine learning side of problem-solving.
For example, for sequence-to-sequence problems discussed here, recent years have witnessed
a drastic increase of interest in model design and training methods, but only a relatively small
group of people discuss the search problem. While search is a classical problem in AI and
plays an important role in practical systems [Russell and Norvig, 2010], it is even not discussed
in recent tutorials and surveys in NLP. This motivates us to write a section on this subject so
that we can have a more complete picture of the problem. However, our general discussion
does not cover all aspects of the search problem. A topic we left out is efficiency [Birch et al.,
2018; Heafield et al., 2021]. While this chapter includes some discussions on the efficiency
issue, such as stopping criteria of search algorithms, efficient methods are a wide-ranging topic
and are generally dependent on model architectures. A more detailed discussion of them can
be found in Chapter 6. Another topic that one may be interested in is constrained search
in which constraints are imposed on the search process [Hokamp and Liu, 2017; Anderson
et al., 2017]. In general, these constraints come from our prior knowledge or interactions with
users. For example, constrained search has been used to enforce term translation constraints
on machine translation [Hasler et al., 2018; Post and Vilar, 2018].

One last note on limitations of this chapter. The formulation of the general sequence-
to-sequence problem described here is based on the left-to-right factorization of Pr(y|x),
resulting in an autoregressive model. One limitation of this formulation is that each prediction
at some step depends only on the preceding words, and so the model cannot access the right
context. To make use of the right context of a word, a simple approach is to build another
model that performs right-to-left generation. The left-to-right and right-to-left models can then
be combined to generate a better output sequence [Liu et al., 2016a; Hoang et al., 2017; Zhang
et al., 2018; 2020a]. An alternative approach is given by non-autoregressive generation or
non-autoregressive decoding in which the constraint of autoregressive generation is removed
and each word prediction is conditioned on the global context [Gu et al., 2018; Ghazvininejad
et al., 2019; Lee et al., 2020]. A nice property of non-autoregressive generation is the possibility

5.5 Summary 59

of system speed-up, since all the words in a sequence can be generated in parallel and we can
do this efficiently using GPUs.

Bibliography

[Akhbardeh et al., 2021] Farhad Akhbardeh, Arkady Arkhangorodsky, Magdalena Biesialska, Ondřej
Bojar, Rajen Chatterjee, Vishrav Chaudhary, Marta R. Costa-jussa, Cristina España-Bonet, Angela
Fan, Christian Federmann, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Barry Haddow,
Leonie Harter, Kenneth Heafield, Christopher Homan, Matthias Huck, Kwabena Amponsah-Kaakyire,
Jungo Kasai, Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn, Nicholas Lourie, Christof
Monz, Makoto Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa, Matteo Negri, Santanu
Pal, Allahsera Auguste Tapo, Marco Turchi, Valentin Vydrin, and Marcos Zampieri. Findings of
the 2021 conference on machine translation (WMT21). In Proceedings of the Sixth Conference on
Machine Translation, pages 1–88, 2021.

[Allauzen et al., 2014] Cyril Allauzen, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias, and Michael
Riley. Pushdown automata in statistical machine translation. Computational Linguistics, 40(3):
687–723, 2014.

[Anderson et al., 2017] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Guided
open vocabulary image captioning with constrained beam search. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 936–945, 2017.

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[Bahdanau et al., 2016] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and
Yoshua Bengio. End-to-end attention-based large vocabulary speech recognition. In 2016 IEEE
international conference on acoustics, speech and signal processing (ICASSP), pages 4945–4949.
IEEE, 2016.

[Barrault et al., 2020] Loïc Barrault, Magdalena Biesialska, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric
Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof Monz, Makoto Morishita,
Masaaki Nagata, Toshiaki Nakazawa, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of
the 2020 conference on machine translation (WMT20). In Proceedings of the Fifth Conference on
Machine Translation, pages 1–55, 2020.

[Birch et al., 2018] Alexandra Birch, Andrew Finch, Minh-Thang Luong, Graham Neubig, and Yusuke
Oda. Findings of the second workshop on neural machine translation and generation. In Proceedings
of the 2nd Workshop on Neural Machine Translation and Generation, pages 1–10, 2018.

[Borji and Itti, 2012] Ali Borji and Laurent Itti. State-of-the-art in visual attention modeling. IEEE
transactions on pattern analysis and machine intelligence, 35(1):185–207, 2012.

[Boulanger-Lewandowski et al., 2013] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pas-
cal Vincent. Audio chord recognition with recurrent neural networks. In Proceedings of 14th

62 BIBLIOGRAPHY

International Society for Music Information Retrieval Conference, 2013.

[Brown et al., 1993] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311, 1993.

[Buckman et al., 2016] Jacob Buckman, Miguel Ballesteros, and Chris Dyer. Transition-based
dependency parsing with heuristic backtracking. In Proceedings of the 2016 Conference on empirical
methods in natural language processing, pages 2313–2318, 2016.

[Casacuberta et al., 2009] Francisco Casacuberta, Jorge Civera, Elsa Cubel, Antonio L Lagarda, Guy
Lapalme, Elliott Macklovitch, and Enrique Vidal. Human interaction for high-quality machine
translation. Communications of the ACM, 52(10):135–138, 2009.

[Chan et al., 2016] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell:
A neural network for large vocabulary conversational speech recognition. In 2016 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pages 4960–4964. IEEE, 2016.

[Chang, 1967] Wing-Tsit Chang. Reflections on things at hand. Columbia University Press, 1967.

[Chang and Collins, 2011] Yin-Wen Chang and Michael Collins. Exact decoding of phrase-based trans-
lation models through lagrangian relaxation. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 26–37, 2011.

[Chaudhari et al., 2021] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath.
An attentive survey of attention models. ACM Transactions on Intelligent Systems and Technology
(TIST), 12(5):1–32, 2021.

[Chen et al., 2018] Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Tiejun Zhao. Syntax-
directed attention for neural machine translation. In Proceedings of the AAAI conference on artificial
intelligence, 2018.

[Chen et al., 2020] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. Uniter: Universal image-text representation learning. In Proceedings of
European conference on computer vision, pages 104–120, 2020.

[Chiang, 2005] David Chiang. A hierarchical phrase-based model for statistical machine translation. In
Proceedings of the 43rd annual meeting of the association for computational linguistics (acl’05),
pages 263–270, 2005.

[Chiang, 2007] David Chiang. Hierarchical phrase-based translation. computational linguistics, 33(2):
201–228, 2007.

[Chiu and Raffel, 2018] Chung-Cheng Chiu and Colin Raffel. Monotonic chunkwise attention. In
Proceedings of the 8th International Conference on Learning Representations ICLR, 2018.

[Cho and Esipova, 2016] Kyunghyun Cho and Masha Esipova. Can neural machine translation do
simultaneous translation? arXiv preprint arXiv:1606.02012, 2016.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merriënboer, Çağlar Guu̇lçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, 2014.

[Chorowski and Jaitly, 2017] Jan Chorowski and Navdeep Jaitly. Towards better decoding and language
model integration in sequence to sequence models. Proc. Interspeech 2017, pages 523–527, 2017.

BIBLIOGRAPHY 63

[Chorowski et al., 2015] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. Advances in neural information
processing systems, 28, 2015.

[Church, 2011] Kenneth Church. A pendulum swung too far. Linguistic Issues in Language Technology,
6, 2011.

[Cohn et al., 2016] Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris
Dyer, and Gholamreza Haffari. Incorporating structural alignment biases into an attentional neural
translation model. In Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 876–885, 2016.

[de Gispert et al., 2010] Adrià de Gispert, Gonzalo Iglesias, Graeme Blackwood, Eduardo R. Banga,
and William Byrne. Hierarchical phrase-based translation with weighted finite-state transducers and
shallow-n grammars. Computational linguistics, 36(3):505–533, 2010.

[Deoras et al., 2011] Anoop Deoras, Tomáš Mikolov, and Kenneth Church. A fast re-scoring strategy to
capture long-distance dependencies. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1116–1127, 2011.

[Dyer et al., 2013] Chris Dyer, Victor Chahuneau, and Noah A Smith. A simple, fast, and effective
reparameterization of ibm model 2. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
644–648, 2013.

[Edunov et al., 2018] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding
back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 489–500, 2018.

[Eikema and Aziz, 2020] Bryan Eikema and Wilker Aziz. Is map decoding all you need? the inadequacy
of the mode in neural machine translation. In Proceedings of the 28th International Conference on
Computational Linguistics, pages 4506–4520, 2020.

[Feng et al., 2016] Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou, and Kenny Zhu. Improving
attention modeling with implicit distortion and fertility for machine translation. In Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 3082–3092, 2016.

[Freitag and Al-Onaizan, 2017] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for
neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation,
pages 56–60, 2017.

[Freitag et al., 2022] Markus Freitag, David Grangier, Qijun Tan, and Bowen Liang. High quality
rather than high model probability: Minimum bayes risk decoding with neural metrics. Transactions
of the Association for Computational Linguistics, 10:811–825, 2022.

[Garg et al., 2019] Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy, and Matthias Paulik. Jointly
learning to align and translate with transformer models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 4453–4462, 2019.

[Germann et al., 2004] Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada.
Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2):127–143, 2004.

[Ghazvininejad et al., 2019] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer.

64 BIBLIOGRAPHY

Mask-predict: Parallel decoding of conditional masked language models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6112–6121, 2019.

[Goel and Byrne, 2000] Vaibhava Goel and William J Byrne. Minimum bayes-risk automatic speech
recognition. Computer Speech & Language, 14(2):115–135, 2000.

[Goodman, 1996] Joshua Goodman. Parsing algorithms and metrics. In 34th Annual Meeting of the
Association for Computational Linguistics, pages 177–183, 1996.

[Graves et al., 2014] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[Grissom II et al., 2014] Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal
Daumé III. Don’t until the final verb wait: Reinforcement learning for simultaneous machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1342–1352, 2014.

[Gu et al., 2017] Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. Learning to
translate in real-time with neural machine translation. In Proceedings of the European Chapter of
the Association for Computational Linguistics (EACL) Conference, 2017, 2017.

[Gu et al., 2018] Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher.
Non-autoregressive neural machine translation. In Proceedings of International Conference on
Learning Representations, 2018.

[Gulcehre et al., 2017] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, and Yoshua Bengio.
On integrating a language model into neural machine translation. Computer Speech & Language, 45:
137–148, 2017.

[Guo et al., 2019] Maosheng Guo, Yu Zhang, and Ting Liu. Gaussian transformer: a lightweight
approach for natural language inference. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 6489–6496, 2019.

[Hasler et al., 2018] Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and Bill Byrne. Neural machine
translation decoding with terminology constraints. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 506–512, 2018.

[He et al., 2017] Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, and Tie-Yan Liu. Decoding
with value networks for neural machine translation. Advances in Neural Information Processing
Systems, 30, 2017.

[He et al., 2016] Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. Improved neural machine transla-
tion with smt features. In Proceedings of the Thirtieth AAAI conference on artificial intelligence,
2016.

[He et al., 2018] Xuanli He, Gholamreza Haffari, and Mohammad Norouzi. Sequence to sequence mix-
ture model for diverse machine translation. In Proceedings of the 22nd Conference on Computational
Natural Language Learning, pages 583–592, 2018.

[Heafield et al., 2021] Kenneth Heafield, Qianqian Zhu, and Roman Grundkiewicz. Findings of the
WMT 2021 shared task on efficient translation. In Proceedings of the Sixth Conference on Machine
Translation, pages 639–651, 2021.

[Hildebrand and Vogel, 2008] Almut Silja Hildebrand and Stephan Vogel. Combination of machine

BIBLIOGRAPHY 65

translation systems via hypothesis selection from combined n-best lists. In Proceedings of the 8th
Conference of the Association for Machine Translation in the Americas: Student Research Workshop,
pages 254–261, 2008.

[Hoang et al., 2017] Cong Duy Vu Hoang, Gholamreza Haffari, and Trevor Cohn. Towards decoding
as continuous optimisation in neural machine translation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 146–156, 2017.

[Hokamp and Liu, 2017] Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence
generation using grid beam search. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1535–1546, 2017.

[Holtzman et al., 2020] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious
case of neural text degeneration. In Proceedings of the 6th International Conference on Learning
Representations ICLR, 2020.

[Huang et al., 2017] Liang Huang, Kai Zhao, and Mingbo Ma. When to finish? optimal beam search
for neural text generation (modulo beam size). In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2134–2139, 2017.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu.
Spatial transformer networks. Advances in neural information processing systems, 28, 2015.

[Jean et al., 2015] Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua
Bengio. Montreal neural machine translation systems for wmt’15. In Proceedings of the tenth
workshop on statistical machine translation, pages 134–140, 2015.

[Khayrallah et al., 2017] Huda Khayrallah, Gaurav Kumar, Kevin Duh, Matt Post, and Philipp Koehn.
Neural lattice search for domain adaptation in machine translation. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages
20–25, 2017.

[Kikuchi et al., 2016] Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu
Okumura. Controlling output length in neural encoder-decoders. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1328–1338, 2016.

[Klein et al., 2017] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush.
Opennmt: Open-source toolkit for neural machine translation. In Proceedings of ACL 2017, System
Demonstrations, pages 67–72, 2017.

[Knight, 1999] Kevin Knight. Decoding complexity in word-replacement translation models. Compu-
tational linguistics, 25(4):607–615, 1999.

[Koehn, 2004] Philipp Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine
translation models. In Conference of the Association for Machine Translation in the Americas, pages
115–124. Springer, 2004.

[Koehn, 2010] Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2010.

[Koehn and Knowles, 2017] Philipp Koehn and Rebecca Knowles. Six challenges for neural machine
translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 28–39,
2017.

[Koehn et al., 2003] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based
translation. In Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pages 127–133, 2003.

66 BIBLIOGRAPHY

[Koehn et al., 2007] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180, 2007.

[Kulikov et al., 2019] Ilia Kulikov, Alexander Miller, Kyunghyun Cho, and Jason Weston. Importance of
search and evaluation strategies in neural dialogue modeling. In Proceedings of the 12th International
Conference on Natural Language Generation, pages 76–87, 2019.

[Kumar et al., 2016] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. In International conference on machine learning, pages
1378–1387, 2016.

[Kumar et al., 2021] Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia Tsvetkov. Controlled text
generation as continuous optimization with multiple constraints. Advances in Neural Information
Processing Systems, 34:14542–14554, 2021.

[Kumar and Byrne, 2004] Shankar Kumar and William Byrne. Minimum bayes-risk decoding for
statistical machine translation. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pages 169–176, 2004.

[Lample and Conneau, 2019] Guillaume Lample and Alexis Conneau. Cross-lingual language model
pretraining. arXiv preprint arXiv:1901.07291, 2019.

[Leblond et al., 2021] Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-
Baptiste, Ioannis Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding
beyond beam search. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 8410–8434, 2021.

[Lee et al., 2020] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive
neural sequence modeling by iterative refinement. In 2018 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2018, pages 1173–1182, 2020.

[Lee et al., 2019] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee
Koh. Attention models in graphs: A survey. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(6):1–25, 2019.

[Li et al., 2021] Jicheng Li, Pengzhi Gao, Xuanfu Wu, Yang Feng, Zhongjun He, Hua Wu, and
Haifeng Wang. Mixup decoding for diverse machine translation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 312–320, 2021.

[Li and Jurafsky, 2016] Jiwei Li and Dan Jurafsky. Mutual information and diverse decoding improve
neural machine translation. arXiv preprint arXiv:1601.00372, 2016.

[Li et al., 2016] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. A
diversity-promoting objective function for neural conversation models. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 110–119, 2016.

[Li et al., 2017] Jiwei Li, Will Monroe, and Dan Jurafsky. Learning to decode for future success. arXiv
preprint arXiv:1701.06549, 2017.

BIBLIOGRAPHY 67

[Li et al., 2019] Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and Shuming Shi. On the word
alignment from neural machine translation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 1293–1303, 2019.

[Li et al., 2018] Yanyang Li, Tong Xiao, Yinqiao Li, Qiang Wang, Changming Xu, and Jingbo Zhu. A
simple and effective approach to coverage-aware neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 292–297, 2018.

[Liu et al., 2016] Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on
target-bidirectional neural machine translation. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 411–416, 2016a.

[Liu et al., 2016] Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Neural machine
translation with supervised attention. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 3093–3102, 2016b.

[Lu et al., 2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image
co-attention for visual question answering. Advances in neural information processing systems, 29,
2016.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, 2015.

[Ma et al., 2019] Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng,
Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. Stacl:
Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix
framework. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3025–3036, 2019.

[Malaviya et al., 2018] Chaitanya Malaviya, Pedro Ferreira, and André FT Martins. Sparse and
constrained attention for neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 370–376, 2018.

[Maruf et al., 2019] Sameen Maruf, André FT Martins, and Gholamreza Haffari. Selective attention
for context-aware neural machine translation. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3092–3102, 2019.

[Matusov et al., 2006] Evgeny Matusov, Nicola Ueffing, and Hermann Ney. Computing consensus
translation for multiple machine translation systems using enhanced hypothesis alignment. In 11th
Conference of the European Chapter of the Association for Computational Linguistics, pages 33–40,
2006.

[Meister et al., 2020] Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. Transac-
tions of the Association for Computational Linguistics, 8:795–809, 2020.

[Mi et al., 2016] Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. Coverage
embedding models for neural machine translation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 955–960, 2016a.

[Mi et al., 2016] Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. Supervised attentions for neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural

68 BIBLIOGRAPHY

Language Processing, pages 2283–2288, 2016b.

[Müller and Sennrich, 2021] Mathias Müller and Rico Sennrich. Understanding the properties of
minimum bayes risk decoding in neural machine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 259–272, 2021.

[Murray and Chiang, 2018] Kenton Murray and David Chiang. Correcting length bias in neural machine
translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages
212–223, 2018.

[Neisser, 2014] Ulric Neisser. Cognitive Psychology: Classic Edition. Psychology Press, 2014.

[Nguyen et al., 2020] Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. Tree-structured
attention with hierarchical accumulation. In Proceedings of the 8th International Conference on
Learning Representations ICLR, 2020.

[Och, 2003] Franz Josef Och. Minimum error rate training in statistical machine translation. In
Proceedings of the 41st annual meeting of the Association for Computational Linguistics, pages
160–167, 2003.

[Och and Ney, 2002] Franz Josef Och and Hermann Ney. Discriminative training and maximum
entropy models for statistical machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 295–302, 2002.

[Och and Ney, 2003] Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

[Opitz and Maclin, 1999] David Opitz and Richard Maclin. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research, 11:169–198, 1999.

[Ott et al., 2018] Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing
uncertainty in neural machine translation. In International Conference on Machine Learning, pages
3956–3965. PMLR, 2018a.

[Ott et al., 2018] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine
translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages
1–9, October 2018b.

[Ott et al., 2019] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 48–53, 2019.

[Post and Vilar, 2018] Matt Post and David Vilar. Fast lexically constrained decoding with dynamic
beam allocation for neural machine translation. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1314–1324, 2018.

[Raffel et al., 2017] Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J Weiss, and Douglas Eck.
Online and linear-time attention by enforcing monotonic alignments. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2837–2846, 2017.

[Raffel et al., 2020] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

BIBLIOGRAPHY 69

[Ren et al., 2017] Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and Li-Jia Li. Deep reinforcement
learning-based image captioning with embedding reward. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 290–298, 2017.

[Rosti et al., 2007] Antti-Veikko Rosti, Spyros Matsoukas, and Richard Schwartz. Improved word-level
system combination for machine translation. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 312–319, 2007.

[Ruder, 2017] Sebastian Ruder. Deep learning for nlp best practices. https://ruder.io/

deep-learning-nlp-best-practices/index.html, 2017.

[Rush and Collins, 2012] Alexander M Rush and MJ Collins. A tutorial on dual decomposition and
lagrangian relaxation for inference in natural language processing. Journal of Artificial Intelligence
Research, 45:305–362, 2012.

[Rush et al., 2015] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 379–389, 2015.

[Russell and Norvig, 2010] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (3nd ed.). Prentice Hall, 2010.

[Sankaran et al., 2016] Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and Abe Ittycheriah. Tempo-
ral attention model for neural machine translation. arXiv preprint arXiv:1608.02927, 2016.

[See, 2018] Abigail See. Deep learning, structure and innate priors: A discussion between yann lecun
and christopher manning, 02 2018. URL http://www.abigailsee.com/2018/02/21/

deep-learning-structure-and-innate-priors.html.

[See et al., 2017] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization
with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, 2017.

[Sennrich et al., 2016] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine
translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, 2016.

[Shannon, 1948] Claude E. Shannon. A mathematical theory of communication. Report, Bell Labs,
1948.

[Shen et al., 2016] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and
Yang Liu. Minimum risk training for neural machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1683–1692, 2016.

[Shen et al., 2019] Tianxiao Shen, Myle Ott, Michael Auli, and Marc’Aurelio Ranzato. Mixture models
for diverse machine translation: Tricks of the trade. In International conference on machine learning,
pages 5719–5728, 2019.

[Silver et al., 2017] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[Stahlberg and Byrne, 2019] Felix Stahlberg and Bill Byrne. On nmt search errors and model errors:
Cat got your tongue? In Proceedings of the 2019 Conference on Empirical Methods in Natural

https://ruder.io/deep-learning-nlp-best-practices/index.html
https://ruder.io/deep-learning-nlp-best-practices/index.html
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html

70 BIBLIOGRAPHY

Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3356–3362, 2019.

[Stahlberg et al., 2016] Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill Byrne. Syntactically
guided neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 299–305, 2016.

[Sternberg, 1996] Robert J Sternberg. Cognitive psychology. Harcourt Brace College Publishers, 1996.

[Sukhbaatar et al., 2015] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-
end memory networks. Advances in neural information processing systems, 28, 2015.

[Sun et al., 2020] Zewei Sun, Shujian Huang, Hao-Ran Wei, Xin-yu Dai, and Jiajun Chen. Generating
diverse translation by manipulating multi-head attention. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8976–8983, 2020.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27, 2014.

[Taskar et al., 2005] Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative matching
approach to word alignment. In Proceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Processing, pages 73–80, 2005.

[Tay et al., 2020] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers:
A survey. CoRR, abs/2009.06732, 2020.

[Tu et al., 2016] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling coverage
for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 76–85, 2016.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
Advances in Neural Information Processing Systems, volume 30, 2017.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018.

[Vijayakumar et al., 2018] Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing Sun,
Stefan Lee, David Crandall, and Dhruv Batra. Diverse beam search for improved description of
complex scenes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[Vogel et al., 1996] Stephan Vogel, Hermann Ney, and Christoph Tillmann. Hmm-based word
alignment in statistical translation. In COLING 1996 Volume 2: The 16th International Conference
on Computational Linguistics, 1996.

[Wiher et al., 2022] Gian Wiher, Clara Meister, and Ryan Cotterell. On decoding strategies for neural
text generators. Transactions of the Association for Computational Linguistics, 10:997–1012, 2022.

[Wu et al., 2020] Xuanfu Wu, Yang Feng, and Chenze Shao. Generating diverse translation from model
distribution with dropout. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1088–1097, 2020.

[Wu et al., 2016] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason

BIBLIOGRAPHY 71

Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. Google’s neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[Xiao et al., 2013] Tong Xiao, Jingbo Zhu, and Tongran Liu. Bagging and boosting statistical machine
translation systems. Artificial Intelligence, 195:496–527, 2013.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption
generation with visual attention. In International conference on machine learning, pages 2048–2057.
PMLR, 2015.

[Xu et al., 2021] Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun Shou, Ming Gong, Wanjun
Zhong, Xiaojun Quan, Daxin Jiang, and Nan Duan. Syntax-enhanced pre-trained model. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 5412–5422, 2021.

[Yang et al., 2018] Baosong Yang, Zhaopeng Tu, Derek F Wong, Fandong Meng, Lidia S Chao, and
Tong Zhang. Modeling localness for self-attention networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4449–4458, 2018a.

[Yang et al., 2018] Yilin Yang, Liang Huang, and Mingbo Ma. Breaking the beam search curse: A
study of (re-) scoring methods and stopping criteria for neural machine translation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3054–3059,
2018b.

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the 2016 conference
of the North American chapter of the association for computational linguistics: human language
technologies, pages 1480–1489, 2016.

[You et al., 2020] Weiqiu You, Simeng Sun, and Mohit Iyyer. Hard-coded gaussian attention for neural
machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 7689–7700, 2020.

[Zaslavskiy et al., 2009] Mikhail Zaslavskiy, Marc Dymetman, and Nicola Cancedda. Phrase-based
statistical machine translation as a traveling salesman problem. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 333–341, 2009.

[Zhang et al., 2020] Jiajun Zhang, Long Zhou, Yang Zhao, and Chengqing Zong. Synchronous
bidirectional inference for neural sequence generation. Artificial Intelligence, 281:103234, 2020a.

[Zhang et al., 2018] Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, and Hongji Wang.
Asynchronous bidirectional decoding for neural machine translation. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[Zhang et al., 2020] Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng Duan, Hai Zhao, and Rui Wang.
Sg-net: Syntax-guided machine reading comprehension. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9636–9643, 2020b.

[Zheng et al., 2019] Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simpler and faster
learning of adaptive policies for simultaneous translation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on

72 BIBLIOGRAPHY

Natural Language Processing (EMNLP-IJCNLP), pages 1349–1354, 2019.

[Zheng et al., 2018] Zaixiang Zheng, Hao Zhou, Shujian Huang, Lili Mou, Xinyu Dai, Jiajun Chen,
and Zhaopeng Tu. Modeling past and future for neural machine translation. Transactions of the
Association for Computational Linguistics, 6:145–157, 2018.

[Zhou et al., 2017] Long Zhou, Wenpeng Hu, Jiajun Zhang, and Chengqing Zong. Neural system
combination for machine translation. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 378–384, 2017.

[Zhou, 2012] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

	5 Sequence-to-Sequence Models
	5.1 Sequence-to-Sequence Problems
	5.2 The Encoder-Decoder Architecture
	5.2.1 Encoding and Decoding
	5.2.2 Example: Neural Machine Translation

	5.3 The Attention Mechanism
	5.3.1 A Basic Model
	5.3.2 The QKV Attention
	5.3.3 Multi-head Attention
	5.3.4 Hierarchical Attention
	5.3.5 Multi-layer Attention
	5.3.6 Remarks

	5.4 Search
	5.4.1 The Length Problem
	5.4.2 Pruning and Beam Search
	5.4.3 Online Search
	5.4.4 Exact Search
	5.4.5 Differentiable Search
	5.4.6 Hypothesis Diversity
	5.4.7 Combining Multiple Models
	5.4.8 More Search Objectives

	5.5 Summary

