Tong Xiao
Jingbo Zhu

Natural Language Processing

Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB
NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY
&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing

permissions and limitations under the License.

June 12, 2025

Tong Xiao and Jingbo Zhu
June, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0

6.1

6.1.1

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 6

Transformers

So far we have discussed several basic models for solving sequence-to-sequence problems.
We now explore a new class of models which are based on a powerful architecture, called
Transformer. Transformers differ in several ways from the models given in Chapters 4 and
5. First, they do not depend on recurrent or convolutional neural networks for modeling
sequences of words, but use only attention mechanisms and feed-forward neural networks.
Second, the use of self-attention in Transformers makes it easier to deal with global contexts
and dependencies among words. Third, Transformers are very flexible architectures and can
be easily modified to accommodate different tasks. The past few years have seen the rise
of Transformers not only in NLP but also in several other fields. As Transformers and their
variants continue to mature, these models are playing an increasingly important role in the
research and application of artificial intelligence.

In this chapter, we will discuss the core ideas of Transformers. We will begin our discussion
by looking at the standard Transformer architecture. Then we will look at some notable
developments, such as improvements to the basic architecture and efficient methods. We will
also present several applications in which Transformer models have been extensively used.
However, the discussion of Transformer is a wide-ranging topic, and there have many, many
related papers. This chapter is not intended to provide a comprehensive survey of the literature
but a collection of selected topics that NLP people may be interested in.

The Basic Model

Here we consider the model presented in Vaswani et al. [2017]’s work. We start by considering
the Transformer architecture and discuss the details of the sub-models subsequently.

The Transformer Architecture

Figure 6.1 shows the standard Transformer model which follows the general encoder-decoder
framework. A Transformer encoder comprises a number of stacked encoding layers (or
encoding blocks). Each encoding layer has two different sub-layers (or sub-blocks), called
the self-attention sub-layer and the feed-forward neural network (FFN) sub-layer. Suppose

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

4 Chapter 6. Transformers

we have a source-side sequence x = x7...T,, and a target-side sequence y = yi...y,,. The
input of an encoding layer is a sequence of m vectors h;...h,,, each having d,,qe dimensions
(or d dimensions for simplicity). We follow the notation adopted in the previous chapters,
using H € R™*4 to denote these input vectors'. The self-attention sub-layer first performs a
self-attention operation Attge¢(-) on H to generate an output C:

C = Attself(H) (6.1)

Here C is of the same size as H, and can thus be viewed as a new representation of the inputs.
Then, a residual connection and a layer normalization unit are added to the output so that the
resulting model is easier to optimize.

The original Transformer model employs the post-norm structure where a residual con-
nection is created before layer normalization is performed, like this

Hyr = LNorm(C+H) 6.2)

where the addition of H denotes the residual connection, and LNorm(-) denotes the layer
normalization function. Substituting Eq. (6.1) into Eq. (6.2), we obtain the form of the
self-attention sub-layer

Layerself(H) = Har
= LNorm(Attge(H) + H) (6.3)

The definitions of LNorm(+) and Attg¢(-) have been given in Chapters 2 and 5, and we will
also discuss them later in the section.

The FFN sub-layer takes Hy.jr and outputs a new representation Hg,, € R™*d_ Tt has the
same form as the self-attention sub-layer, with the attention function replaced by the FFN
function, given by

Layerffn (Hself) = Hffn
= LNorm(FFN(Hself) + Hself) (6.4)

Here FEN(-) could be any feed-forward neural networks with non-linear activation func-
tions. The most common structure of FFN(-) is a two-layer network involving two linear
transformations and a ReL U activation function between them.

For deep models, we can stack the above neural networks. Let H' be the output of layer
I. Then, we can express H' as a function of H'~1. We write this as a composition of two

h;
"Provided h; € R? is a row vector, we have H =
h’"L

6.1 The Basic Model

P

r(-|yo, 1. Tm)

Pr(-|yo.--Yn—1,21...Tm)

Encoder

-)[Add & LayerNorm

i

Feed-Forward Network
Lx

-

Softmax(STW,) l

Add & LayerNorm](—

T

Feed-Forward Network
Layerﬁn ()

T

: Layerffn ()
-)[Add & LayerNorm

T

Self-Attention
Layerself ()

Word Position

T1...Tm

h

Encoder-Decoder Attention
Layer,, g5 ()

T

Self-Attention
Layerself ()

Word Position

Yoyi---Yn—1

Add & LayerNorm l(—

T ><L

Add & LayerNorm](—

Figure 6.1: The Transformer architecture [Vaswani et al., 2017]. There are L stacked layers on
each of the encoder and decoder sides. An encoding layer comprises a self-attention sub-layer
and an FFN sub-layer. Both of these sub-layers share the same structure which involves a
core function (either Layer,.;(+) or Layerg, (+)), followed by a residual connection and a layer
normalization unit. Each decoding layer has a similar architecture with the encoding layers, but
with an additional encoder-decoder attention sub-layer sandwiched between the self-attention
and FFN sub-layers. As with most sequence-to-sequence models, Transformer takes xi...x,,
and yg...y;—1 for predicting y;. The representation of an input word comprises a sum of a
word embedding and a positional embedding. The distributions {Pr(-|yo...yi—1,21...2:,)} are
generated in sequence by a Softmax layer, which operates on a linear transformation of the

output from the last decoding layer.

sub-layers

H' = Layerg,(H.)
Héelf = Layerself(Hl_1>

(6.5)
(6.6)

6 Chapter 6. Transformers

If there are L encoding layers, then H” will be the output of the encoder. In this case, H can
be viewed as a representation of the input sequence that is learned by the Transformer encoder.
H?O denotes the input of the encoder. In recurrent and convolutional models, H can simply be
word embeddings of the input sequence. Transformer takes a different way of representing
the input words , and encodes the positional information explicitly. In Section 6.1.2 we will
discuss the embedding model used in Transformers.

The Transformer decoder has a similar structure as the Transformer encoder. It comprises
L stacked decoding layers (or decoding blocks). Let S be the output of the I-th decoding
layer. We can formulate a decoding layer by using the following equations

Sl = Layerffn(séross) (67)
Slcross = Layercross (HLv Slsgl%) (68)
Slas = Layerg;(S"™) (6.9)

Here there are three decoder sub-layers. The self-attention and FFEN sub-layers are the same

as those used in the encoder. Layer denotes a cross attention sub-layer (or encoder-

cross ()
decoder sub-layer) which models the transformation from the source-side to the target-side. In
Section 6.1.6 we will see that Layer,,.(-) can be implemented using the same function as
Layerge(-)-

The Transformer decoder outputs a distribution over a vocabulary Vy at each target-side
position. This is achieved by using a softmax layer that normalizes a linear transformation of

S’ to distributions of target-side words. To do this, we map S” to an n x |Vy | matrix O by
o = stw, (6.10)

where W, € R**V¥| is the parameter matrix of the linear transformation.

Then, the output of the Transformer decoder is given in the form

Pr(-[yo,x)
: = Softmax(O)
Pr(-[yo-.-Yn-1,%)
Softmax (o)
- : 6.11)
Softmax(oy,)

where o; denotes the i-th row vector of O, and y denotes the start symbol (SOS). Under this
model, the probability of y given x can be defined as usual,

logPr(y|x) = > logPr(yilyo...yi1,%) (6.12)

=1

This equation resembles the general form of language modeling: we predict the word at

6.1.2

6.1 The Basic Model 7

time ¢ given all of the words up to time ¢ — 1. Therefore, the input of the Transformer decoder
is shifted one word left, that is, the input is yg...y»—1 and the output is y;...yp.

The Transformer architecture discussed above has several variants which have been suc-
cessfully used in different fields of NLP. For example, we can use a Transformer encoder
to represent texts (call it the encoder-only architecture), can use a Transformer decoder to
generate texts (call it the decoder-only architecture), and can use a standard encoder-decoder
Transformer model to transform an input sequence to an output sequence. In the rest of this
chapter, most of the discussion is independent of the particular choice of application, and will
be mostly focused on the encoder-decoder architecture. In Section 6.5, we will see applications
of the encoder-only and decoder-only architectures.

Positional Encoding

In their original form, both FFNs and attention models used in Transformer ignore an important
property of sequence modeling, which is that the order of the words plays a crucial role in
expressing the meaning of a sequence. This means that the encoder and decoder are insensitive
to the positional information of the input words. A simple approach to overcoming this problem
is to add positional encoding to the representation of each word of the sequence. More formally,
a word x; can be represented as a d-dimensional vector

xp;, = x;+PE(j) (6.13)

Here x; € R is the embedding of the word which can be obtained by using the word embedding
models, as described Chapter 3. PE(j) € R? is the representation of the position 5. Vanilla
Transformer employs the sinusoidal positional encoding models which we write in the form

. .. 1
PE(Z,2]{}) = Sln(l . W) (614)

1
PE(i,2k+1) = s 6.15
(i,2k+1) cos(i 100002k/d) (6.15)

where PE(i, k) denotes the k-th entry of PE(4). The idea of positional encoding is to distin-
guish different positions using continuous systems. Here we use the sine and cosine functions
with different frequencies. The interested reader can refer to Chapter 4 to see that such a
method can be interpreted as a carrying system. Because the encoding is based on individual
positions, it is also called absolute positional encoding. In Section 6.3.1 we will see an
improvement to this method.

Once we have the above embedding result, Xxp;...xp,,, is taken as the input to the Trans-
former encoder, that is,

XP1
H, = : (6.16)

XP,

Similarly, we can also define the input on the decoder side.

6.1.3

8 Chapter 6. Transformers

(a) RNN (b) CNN (r = 3) (c) Self-attention

Figure 6.2: Information flows in recurrent, convolutional and self-attention models, shown as
arrow lines between positions.

Multi-head Self-attention

The use of self-attention is perhaps one of the most significant advances in sequence-to-
sequence models. It attempts to learn and make use of direct interactions between each pair
of inputs. From a representation learning perspective, self-attention models assume that the
learned representation at position ¢ (denoted by c;) is a weighted sum of the inputs over the
sequence. The output c; is thus given by

m
Cc;, = Za@jhj (6.17)
j=1

where «; ; indicates how strong the input h; is correlated with the input h;. We thus can view
c; as a representation of the global context at position . ¢; ; can be defined in different ways if
one considers different attention models. Here we use the scaled dot-product attention function
to compute «; ;, as follows

iy = Softmax(hih;r/ﬁ)

exp(h;h} /)
— 6.18
S exp(h? /B) (19

where £ is a scaling factor and is set to v/d.

Compared with conventional recurrent and convolutional models, an advantage of self-
attention models is that they shorten the computational “distance” between two inputs. Figure
6.2 illustrates the information flow in these models. We see that, given the input at posi-
tion ¢, self-attention models can directly access any other input. By contrast, recurrent and
convolutional models might need two or more jumps to see the whole sequence.

We can have a more general view of self-attention by using the QKV attention model.

q1
Suppose we have a sequence of x queries Q = | : |, and a sequence of 1) key-value pairs (K =
qx
k1 V1
, V.= | : |). The output of the model is a sequence of vectors, each corresponding to

ky Vy

6.1 The Basic Model 9

a query. The form of the QKV attention is given by

T

QK
Attt (Q, K, V) = Softma
gk (Q) m X(\/a

We can write the output of the QKV attention model as a sequence of row vectors

% (6.19)

Ci1

Ck

= Attge(Q,K,V) (6.20)

To apply this equation to self-attention, we simply have

H! = HW!¢ (6.21)
Hf = HWF (6.22)
H' = HWY (6.23)

where W9, W* WV ¢ R%*4 represents linear transformations of H.

By considering Eq. (6.1), we then obtain

C = Attself(H)
= Attg (H9,HF HY)
q{Hk]T

Vd

= Softmax(yHY (6.24)

Here Softmax(HOHAT

{hy,...,h,,}, that is

) is an m X m matrix in which each row represents a distribution over

rowi = (07 N Oéi,mi| (625)

We can improve the above self-attention model by using a technique called multi-head
attention. This method can be motivated from the perspective of learning from multiple
lower-dimensional feature sub-spaces, which projects a feature vector onto multiple sub-spaces
and learns feature mappings on individual sub-spaces. Specifically, we project the whole of
the input space into 7 sub-spaces (call them heads), for example, we transform H € R™*¢
into 7 matrices of size m x g, denoted by {Hbead ... HhEead}, The attention model is then run
T times, each time on a head. Finally, the outputs of these model runs are concatenated, and
transformed by a linear projection. This procedure can be expressed by

C = Merge(Chead Cheadyw, (6.26)
(6.27)

6.1.4

10 Chapter 6. Transformers

For each head h,
Hq HkT
Chead _ Softmax(thdh])H}i (6.28)
H] = HW] (6.29)
Hf = HW! (6.30)
H! = HW} (6.31)

Here Merge(-) is the concatenation function, and Attqiv(-) is the attention function de-
scribed in Eq. (6.20). Wq,W,’_“L,W,”L € R 7 are the parameters of the projections from a
d-dimensional space to a g—dimensional space for the queries, keys, and values. Thus, HZ, Hz,
H}, and C},fbead are all m x g matrices. Merge(Chead, .. Chead) produces an m x d matrix.
It is then transformed by a linear mapping W, € R%*9, leading to the final result C € R%*¢,

While the notation here seems somewhat tedious, it is convenient to implement multi-head
models using various deep learning toolkits. A common method in Transformer-based systems
is to store inputs from all the heads in data structures called tensors, so that we can make use
of parallel computing resources to have efficient systems. A more general discussion of the
QKYV attention and multi-head attention models can be found in Chapter 5.

Layer Normalization

Layer normalization provides a simple and effective means to make the training of neural
networks more stable by standardizing the activations of the hidden layers in a layer-wise
manner. As introduced in Ba et al. [2016]’s work, given a layer’s output h € R?, the layer
normalization method computes a standardized output LNorm(h) € R? by

h—p

LNorm(h) = go
o+e

+b (6.32)

Here 1 € R% and o € R? are the mean and standard derivation of the activations. Let h, be the
k-th dimension of h. y and o are given by

1 d
uo= d‘zlh’“ (6.33)
_ 1 - 2
o = Jd.;l(hku) (6.34)

Here g € R? and b € R? are the rescaling and bias terms. They can be treated as parameters
of layer normalization, whose values are to be learned together with other parameters of the
Transformer model. The addition of € to ¢ is used for the purpose of numerical stability. In
general, € is chosen to be a small number.

We illustrate the layer normalization method for the hidden states of an encoder in the

6.1.5

6.1 The Basic Model 11

following example (assume thatm =4, d=3,g=1,b =0, and ¢ = 0.1).

_ _ 1-13 1-1.3 2-1.3
h;| 1 1 2| w=13,0=05 8'%“0)'% 8'§)+8¢13 0(')5%061
hy (0.9 09 Of p=06,0=04 — 04701 0470.1 0.4+0.1
h; |07 0.8 0| p=050=04 g2 08-06 D05

3 H ’ 0501 04501 04301
hy[3 1 7] p=37,0=25 25401 25101 2.5+0.1

As discussed in Section 6.1.1, the layer normalization unit in each sub-layer is used to
standardize the output of a residual block. Here we describe a more general formulation for
this structure. Suppose that F'(-) is a neural network we want to run. Then, the post-norm
structure of F'(-) is given by

H,,: = LNorm(F(Hi,)+ Hiy) (6.35)

where H;, and Hoytpyt are the input and output of this model. Clearly, Eq. (6.4) is an instance
of this equation.

An alternative approach to introducing layer normalization and residual connections into
modeling is to execute the LNorm(-) function right after the F'(-) function, and to establish an
identity mapping from the input to the output of the entire sub-layer. This structure, known as
the pre-norm structure, can be expressed in the form

Hoy = LNorm(F(Hp))+Hi, (6.36)

Both post-norm and pre-norm Transformer models are widely used in NLP systems. See
Figure 6.3 for a comparison of these two structures. In general, residual connections are
considered an effective means to make the training of multi-layer neural networks easier. In
this sense, pre-norm Transformer seems promising because it follows the convention that a
residual connection is created to bypass the whole network and that the identity mapping from
the input to the output leads to easier optimization of deep models. However, by considering
the expressive power of a model, there may be modeling advantages in using post-norm
Transformer because it does not so much rely on residual connections and enforces more
sophisticated modeling for representation learning. In Section 6.3.2, we will see a discussion
on this issue.

Feed-forward Neural Networks

The use of FFNs in Transformer is inspired in part by the fact that complex outputs can be
formed by transforming the inputs through nonlinearities. While the self-attention model
itself has some nonlinearity (in Softmax(-)), a more common way to do this is to consider
additional layers with non-linear activation functions and linear transformations. Given an input
H;, € R™*4 and an output Hyy, € R™*9, the Hyy = FFN(Hy,) function in Transformer

6.1.6

12 Chapter 6. Transformers

..................... e
R : F(D[1N]
Add & LayerNorm i Hin () X Hout
T (a) Post-norm

Core Function

F(") ['
‘\J Hj, = LNomn() | F() Hout

(b) Pre-norm

Figure 6.3: The post-norm and pre-norm structures. F'(-) = core function, LNorm(-) = layer
normalization, and @ = residual connection.

has the following form

Hout = Hhidden Wy +by (6.37)
Hypiqden = ReLUH; W), +by,) (6.38)

where Hyiqden € R"™* % is the hidden states, and W), € R¥*din b, € R, W € R xd
and by € R? are the parameters. This is a two-layer FEN in which the first layer (or hidden
layer) introduces a nonlinearity through ReLU(-)? and the second layer involves only a linear
transformation. It is common practice in Transformer to use a larger size of the hidden layer.
For example, a common choice is dg, = 4d, that is, the size of each hidden representation is 4
times as large as the input.

Note that using a wide FFN sub-layer has been proven to be of great practical value in
many state-of-the-art systems. However, a consequence of this is that the model is occupied
by the parameters of the FFN. Table 6.1 shows parameter numbers and time complexities for
different modules of a standard Transformer system. We see that FFNs dominate the model
size when dg, is large, though they are not the most time consuming components. In the case
of very big Transform models, we therefore wish to address this problem for building efficient
systems.

Attention Models on the Decoder Side

A decoder layer involves two attention sub-layers, the first of which is a self-attention sub-
layer, and the second is a cross-attention sub-layer. These sub-layers are based on either the
post-norm or the pre-norm structure, but differ by designs of the attention functions. Consider,
for example, the post-norm structure, described in Eq. (6.35). We can define the cross-attention

2ReLU(z) = max{0,z}.

6.1 The Basic Model 13
Sub-model # of Parameters | Time Complexity | X
Multi-head Self-attention 4d? O(m?-d) L
Encoder Feed-forward Network | 2d - dg, +d + dgn O(m-d-dgy) L
Layer Normalization 2d O(d) 2L
Multi-head Self-attention 4d? O(n?-d) L
Decoder Multi-head Cross-attention 4d? O(m-n-d) L
Feed-forward Network | 2d - dgp +d + dgn O(n-d-dg,) L
Layer Normalization 2d O(d) 3L

Table 6.1: Numbers of parameters and time complexities of different Transformer modules
under different setups. m = source-sequence length, n = target-sequence length, d = default
number of dimensions of a hidden layer, dg, = number of dimensions of the FFN hidden
layer, 7 = number of heads in the attention models, and L = number of encoding or decoding
layers. The column x means the number of times a sub-model is applied on the encoder or
decoder side. The time complexities are estimated by counting the number of multiplication of
floating-point numbers.

and self-attention sub-layers for a decoding layer to be

Scross Layel"cross (Henc ’ sself)
LNorm(AttCI‘OSS (Henm Sself) + Sself) (6.39)
Sself Layerself (S)
= LNorm(Attses(S)+S) (6.40)

where S € R"*? is the input of the self-attention sub-layer, S¢oss € R™*? and Syq¢ € R™*¢
are the outputs of the sub-layers, and H,,. € R™*¢ is the output of the encoder .

As with conventional attention models, cross-attention is primarily used to model the
correspondence between the source-side and target-side sequences. The Attcyoss(-) function
is based on the QKV attention model which generates the result of querying a collection of
key-value pairs. More specifically, we define the queries, keys and values as linear mappings
of Sgeir and Hey,e, as follows

Sgelf Sselfwgross (641)
Hie = HeoWe (6.42)
Hgnc = HeHCWgnc (643)

where Woss, WE WU € R are the parameters of the mappings. In other words, the
queries are defined based on S, and the keys and values are defined based on Hey,c.

3For an encoder having L encoder layers, Hene = HL.

14 Chapter 6. Transformers

[] [4
| I
/ . i \\ / g i
@ C/O [[] @ C/O (] ([
i—3 1—2 i—1) i+1 i—3 1—2 i—1) i+1
(a) Encoder-side Self-attention (b) Decoder-side Self-attention

Figure 6.4: Self-attention on the encoder and decoder sides. Each line connects an input and
an output of the self-attention model, indicating a dependency of an output state on an input
state. For encoder self-attention, the output at any position is computed by having access to the
entire sequence. By contrast, for decoder self-attention, the output at position ¢ is computed by
seeing only inputs at positions up to 7.

Atteross(+) is then defined as

Attcross (Henw Sself) = Attqu (Sself7 H’gnm Hgnc)
q [k }T
= Softmax(—se—ene yHY (6.44)

Vd

The Attgee(+) function has a similar form as Attcyoss(-), with linear mappings of S taken
as the queries, keys, and values, like this

Atter(S) = Attee (S, S, SY)
Sq[sk]T
Vid

= Softmax(

+M)S? (6.45)

where S =SWJ__, Sk = SW’; ,and S* = SW__ are linear mappings of S with parameters
wi Wk

v dxd
dec’ dec? Wdec eR .

This form is similar to that of Eq. (6.20). A difference compared to self-attention on
the encoder side, however, is that the model here needs to follow the rule of left-to-right
generation (see Figure 6.4). That is, given a target-side word at the position 7, we can see only
the target-side words in the left context y1 .Yi—1. To do this, we add a masking variable M
to the unnormalized weight matrix S E%] + M. Both M and 55 d] + M are of size n X n,
and so a lower value of an entry of M means a larger bias towards lower alignment scores for
the corresponding entry of % + M. In order to avoid access to the right context given ¢,
M is defined to be

0 i<k
M(ik) = { =) (6.46)
-0 1>

where M (i, k) indicates a bias term for the alignment score between positions ¢ and k. Below

6.1.7

6.1 The Basic Model 15

we show an example of how the masking variable is applied (assume n = 4).

Sof "[SH" M
oftmax +
(Nz)
[2 01 1 1 0 -0 —00 —00
— Softmax(0 09 09 09 0 - —oc)

0
02 08 07 2| [0 0 0 -—oo
03 1 03 3] |0

2 —o0 —00 —00

0 09 -0 —x
0.2 08 07 —o0
0.3 1 0.3 3

1 0 0 0
_ 03 07 O 0 (6.47)
02 04 04 O

0.06 0.1 0.05 0.8

= Softmax(

As noted in Section 6.1.3, it is easy to improve these models by using the multi-head
attention mechanism. Also, since decoders are typically the most time-consuming part of
practical systems, the bulk of the computational effort in running these systems is very much
concerned with the efficiency of the attention modules on the decoder side.

Training and Inference

Transformers can be trained and used in a regular way. For example, we can train a Transformer
model by performing gradient descent to minimize some loss function on the training data
(see Chapter 2), and test the trained model by performing beam search on the unseen data (see
Chapter 5). Below we present some of the techniques that are typically used in the training
and inference of Transformer models.

* Learning Rate Scheduling. As standard neural networks, Transformers can be directly
trained using back-propagation. The training process is generally iterated many times to
make the models fit the training data well. In each training step, we update the weights of
the neural networks by moving them a small step in the direction of negative gradients of
errors. There are many ways to design the update rule of training. A popular choice is to
use the Adam optimization method [Kingma and Ba, 2014]. To adjust the learning rate
during training, Vaswani et al. [2017] present a learning rate scheduling strategy which
increases the learning rate linearly for a number of steps and then decay it gradually.
They design a learning rate of the form

Ir = lIrg 'min{ns_tgg’, Nstep * (nwarmup)fl's’} (6.48)

where [rg denotes the initial learning rate, and ngtcp, denotes the number of training
steps we have executed, and nyarmup denotes the number of warmup steps. In the first

16

Chapter 6. Transformers

Nwarmup St€PS, the learning rate [r grows larger as training proceeds. It reaches the
highest value at the point of ngtep, = Nwarmup» and then decreases as an inverse square

—0.5
step)

root function (i.e., Irg - n
Batching and Padding. To make a trade-off between global optimization and training
convergency, it is common to update the weights each time on a relatively small collection
of samples, called a minibatch of samples. Therefore, we can consider a batch version
of forward and backward computation processes in which the whole minibatch is used
together to obtain the gradient information. One advantage of batching is that it allows
the system to make use of efficient tensor operations to deal with multiple sequences
in a single run. This requires that all the input sequences in a minibatch are stored in a
single memory block, so that they can be read in and processed together. To illustrate

this idea, consider a minimatch containing four samples whose source-sides are

C D E F

£RE >
Xz w
< =

Z

We can store these sequences in a 4 x 6 continuous block where each “row” represents a
sequence, like this

A B C D E F
M N O 0O 0O 0O
R S T 0O 0O 0O
W X Y Z 0O 0O

Here padding words [J are inserted between sequences, so that these sequences are
aligned in the memory. Typically, we do not want padding to affect the operation of
the system, and so we can simply define [J as a zero vector (call it zero padding). On
the other hand, in some cases we are interested in using padding to describe something
that is not covered by the input sequences. For example, we can replace padding words
with the words in the left (or right) context of a sequence, though this may require
modifications to the system to ensure that the newly added context words do not cause
additional content to appear in the output.

Search and Caching. At test time, we need to search the space of candidate hypotheses
(or candidate target-side sequences) to identify the hypothesis (or target-side sequence)
with the highest score.

y = argmax score(X,y) (6.49)
y

where score(x,y) is the model score of the target-side sequence y given the source-side
sequence x. While there are many search algorithms to achieve this, most of them
share a similar structure: the search program operates by extending candidate target-side

6.2

6.2 Syntax-aware Models 17

s — —>|—>l—> — s
g
—
—

(a) decoding step 1 (b) decoding step 2 (c) decoding step 3

Figure 6.5: Illustration of the caching mechanism in Transformer decoders. Rectangles indicate
the states of decoding layers or sub-layers. At step ¢, all the states at previous steps are stored
in a cache (see dotted boxes), and we only need to compute the states for this step (see blue
rectangles and arrows). Then, we add the newly generated states to the cache, and move on to
step 2+ 1.

sequences in a pool at a time. In this way, the resulting algorithm can be viewed as a
left-to-right generation procedure. For a more detailed discussion of search algorithms
and model scores of general sequence-to-sequence models, see Chapter 5. Note that all
of the designs of score(x,y), no matter how complex, are based on computing Pr(y|x).
Because the attention models used in Transformer require computing the dot-product of
each pair of the input vectors of a layer, the time complexity of the search algorithm is a
quadratic function of the length of y. It is therefore not efficient to repeatedly compute
the outputs of the attention models for positions that have been dealt with. This problem
can be addressed by caching the states of each layer for words we have seen. Figure
6.5 illustrates the use of the caching mechanism in a search step. All the states for
positions < ¢ are maintained and easily accessed in a cache. At position ¢, all we need is
to compute the states for the newly added word, and then to update the cache.

Syntax-aware Models

Although Transformer is simply a deep learning model that does not make use of any linguistic
structure or assumption, it may be necessary to incorporate our prior knowledge into such
systems. This is in part because NLP researchers have long believed that a higher level of
abstraction of data is needed to develop ideal NLP systems, and there have been many systems
that use structure as priors. However, structure is a wide-ranging topic and there are several
types of structure one may refer to See [2018]’s work. For example, the inductive biases used
in our model design can be thought of as some structural prior, while NLP models can also
learn the underlying structure of problems by themselves. In this subsection we will discuss

18 Chapter 6. Transformers

some of these issues. We will focus on the methods of introducing linguistic structure into
Transformer models. As Transformer can be applied to many NLP tasks, which differ much in
their input and output formats, we will primarily discuss modifications to Transformer encoders
(call them syntax-aware Transformer encoders). Our discussion, however, is general, and
the methods can be easily extended to Transformer decoders.

6.2.1 Syntax-aware Input and Output

One of the simplest methods of incorporating structure into NLP systems is to modify the
input sequence, leaving the system unchanged. As a simple example, consider a sentence
where each word x; is assigned a set of x syntactic labels {tagjl-, vy tag;”} (e.g., POS labels
and dependency labels). We can write these symbols together to define a new “word”

wj/tagjl-/.../tag;”
Then, the embedding of this word is given by
xp; = e(z;/tagj/.../tag]) +PE(j) (6.50)

where e(z; /tagjl/.../tagg”) € R? is the embedding of xj/tagjl-/.../tagg“. Since a@-/‘cag}/.../tag}li
is a complex symbol, we decompose the learning problem of e(x;/ tag} /.../tagl) into easier
problems. For example, we can develop x embedding models, each producing an embedding
given a tag. Then, we write e(z;/ tagjl- /.../tag]) as a sum of the word embedding and tag
embeddings

e(a:j/tag}/.../tag?) = X +e(tag}) + ... +e(tag§”) (6.51)

where {e(tagjl-), ...,e(tagy)} are the embeddings of the tags. Alternatively, we can combine
these embeddings via a neural network in the form

e(xj/tag}/.../tag;) = FFNembed(xj,e(tagjl-),...,e(tag;)) (6.52)

where FFNepped(+) is a feed-forward neural network that has one layer or two.

We can do the same thing for sentences on the decoder side as well, and treat y; / tag} /.../tagl
as a syntax-augmented word. However, this may lead to a much larger target-side vocabulary

and poses a computational challenge for training and inference.

Another form that is commonly used to represent a sentence is syntax tree. In linguistics, the
syntax of a sentence can be interpreted in many different ways, resulting in various grammars
and the corresponding tree (or graph)-based representations. While these representations
differ in their syntactic forms, a general approach to use them in sequence modeling is tree
linearization. Consider the following sentence annotated with a constituency-based parse tree

6.2.2

6.2 Syntax-aware Models 19
S

NMP\.
| T |

PRP VBZ ADJP !
| | |
It s 5]
|
interesting

We can write this tree structure as a sequence of words, syntactic labels and brackets via a tree
traversal algorithm, as follows

S (NP (PRP It e)ne (VP (VBZ s)ypz (ADIP (]

interesting)y Japip Ive (. !).)s

This sequence of syntactic tokens can be used as an input to the system, that is, each token
is represented by word and positional embeddings, and then the sum of these embeddings is
treated as a regular input of the encoder. An example of the use of linearized trees is tree-to-
string machine translation in which a syntax tree in one language is translated into a string in
another language [Li et al., 2017; Currey and Heafield, 2018]. Linearized trees can also be
used for tree generation. For example, we can frame parsing tasks as sequence-to-sequence
problems to map an input text to a sequential representation of its corresponding syntax tree
[Vinyals et al., 2015; Choe and Charniak, 2016]. See Figure 6.6 for illustrations of these
models. It should be noted that the methods described here are not specific to Transformer but
could be applied to many models, such as RNN-based models.

Syntax-aware Attention Models

For Transformer models, it also makes sense to make use of syntax trees to guide the process
of learning sequence representations. In the previous section we saw how representations of a
sequence can be computed by relating different positions within that sequence. This allows us
to impose some structure on these relations which are represented by distributions of attention
weights over all the positions. To do this we use the encoder self-attention with an additive
mask

HH"T

AttSyng(H) = Softmax(——=—
Vd

+M)HY (6.53)

or alternatively with a multiplicative mask
q [Hk]T
Vd

where M € R™*™ is a matrix of masking variables in which a larger value of M (i, j) indicates

AttSyng(H) = Softmax(oOM)H" (6.54)

20 Chapter 6. Transformers

"7 !

T Tt 7T

Encoder > Decoder

T T T+ 7T 7T+t 1T 7 T T 7
(ADJP (JJ Great)u (. !).)ADIP (SOS) 1R #F

(a) Tree-to-String Machine Translation

(ADJP (JJ Great)y (. !).)ADIP
T T Tt 1T 1T 7
Encoder > Decoder
T 7T T T T 7T 1T 1T 7
Great ! (SOS) (ADJIP (JJ Great)y (. !).

(b) Constituency Parsing

Figure 6.6: Illustration of tree linearization on either the encoder or decoder side. For tree-
to-string machine translation, the encoder takes sequential representation of an input parse
tree, and the decoder outputs the corresponding translation. For parsing, the encoder takes a
sentence, and the decoder outputs the corresponding syntax tree.

a stronger syntactic correlation between positions ¢ and j. In the following description we
choose Eq. (6.54) as the basic form.

One common way to design M is to project syntactic relations of the input tree structure
into constraints over the sequence. Here we consider constituency parse trees and dependency
parse trees for illustration. Generally, two types of masking methods are employed.

* (-1 Masking. This method assigns M (7, 7) a value of 1 if the words at positions ¢ and j
are considered syntactically correlated and a value of O otherwise [Zhang et al., 2020;
Bai et al., 2021]. To model the relation between two words in a syntax tree, we can
consider the distance between their corresponding nodes. One of the simplest forms is
given by

M(i,j) = {1 (6.4 < o (6.55)

0 otherwise

where w(7,7) is the length of the shortest path between the nodes of the words at
positions ¢ and j. For example, given a dependency parse tree, w(i,j) is the number

6.2.3

6.2 Syntax-aware Models 21

of dependency edges in the path between the two words. For a constituency parse
tree, all the words are leaf nodes, and so w(i,j) gives a tree distance between the two
leaves in the same branch of the tree. wpax is @ parameter used to control the maximum
distance between two nodes that can be considered syntactically correlated. For example,
assuming that there is a dependency parse tree and wpx = 1, Eq. (6.55) enforces a
constraint that the attention score between positions 7 and j is computed only if they
have a parent-dependent relation®.

Soft Masking. Instead of treating M as a hard constraint, we can use it as a soft
constraint that scales the attention weight between positions ¢ and j in terms of the
degree to which the corresponding words are correlated. An idea is to reduce the attention
weight as w(4, j) becomes larger. A very simple method to do this is to transform w(i, j)
in some way that M (i, j) holds a negative correlation relationship with w(i,) and its
value falls into the interval [0, 1]

M(i,j) = DNorm(w(i,j)) (6.56)

There are several alternative designs for DNorm(+). For example, one can compute
a standardized score of —w(4,j) by subtracting its mean and dividing by its standard
deviation [Chen et al., 2018a], or can normalize 1/w(i,j) over all possible j in the
sequence [Xu et al., 2021b]. In cases where parsers can output a score between positions ¢
and j, it is also possible to use this score to compute M (i, j). For example, a dependency
parser can produce the probability of the word at position 7 being the parent of the word
at position j [Strubell et al., 2018]. We can then write M (i,) as

M(Z,]) = Prparent (Z|]) (6.57)
or alternatively
M(Za]) = maX{Prparent (Z |])7 Prparent (]|2)} (6.58)

where Prparent(7]7) and Prparent(j|i) are the probabilities given by the parser. See
Figure 6.7 for an example of inducing a soft masking variable from a dependency parse
tree.

Multi-branch Models

Introducing syntax into NLP systems is not easy. This is partially because automatic parse
trees may have errors, and partially because the use of syntax may lead to strong assumption of
the underlying structure of a sentence. Rather than combining syntactic and word information

“*For multiplicative masks, M (¢,5) = 0 does not mean that the attention weight between j and ¢ is zero
because the Softmax function does not give a zero output for a dimension whose corresponding input is of a zero

HH"

value. A method to “mask™ an entry of Softmax(d) is to use an additive mask and set M (¢,7) = —oco if

w(i,7) > wmax.

22 Chapter 6. Transformers

N
> 6{&

< 'QO o (b,c) O'Qb N
ANERER N

The [
concert .
'Y Yan ws [

The concert was wonderful !
wonderful .

! N

(a) Dependency Parse Tree (b) Mask M (darker color means larger value)

Figure 6.7: Priors induced from a dependency parse tree. The row ¢ of the matrix M represents
a distribution that describes how much weight we can give to M (4, j) in terms of the syntactic
distance between ¢ and j.

into one “big” model, it may be more flexible and effective to build one model to encode syntax
and a different one to encode word sequences. One way to achieve this is through the use of
multiple neural networks (called branches or paths), each dealing with one type of input. The
outputs of these branches are then combined to produce an output [Xie et al., 2017; Fan et al.,
2020; Lin et al., 2022b]. Various methods have therefore been used to combine different types
of input for neural models like Transformer.

One commonly-used approach is to build two separate encoders, in which one model is
trained to encode the syntactic input (denoted by t), and the other is trained to encode the usual
input (denoted by x). Figure 6.8 (a) illustrates this multi-encoder architecture. The syntactic
encoder Encodegyy, (t) is based on models presented in Sections 6.2.1 and 6.2.2, and the text
encoder Encodegext(x) is a standard Transformer encoder. The representations generated by
these encoders are then fed into the combination model as input, and combined into a hybrid
representation, given by

thbrid = Combine(HsynyHtext)
= Combine(Encodegyy (t), Encodetext (x)) (6.59)

There are several designs for Combine(-), depending on what kind of problems we apply
the encoders to. For example, if we want to develop a text classifier, Combine(-) can be a
simple pooling network. For more complicated tasks, such as machine translation, Combine(-)
can be a Transformer encoder as well, and we can fuse information from different sources by
performing self-attention on [Hgyy, Heext].

While we restrict attention to syntactic models in this section, the general multi-encoder
architecture can be used in many problems where inputs from additional sources are required.
For example, one can use one encoder to represent a sentence, and use another encoder to

6.2 Syntax-aware Models 23

1 1 1

Combine(. — —
N 0 N T
|2 toetd £ g %
\:,5; 5 g ? t 1| Head,
& i M M
ERER: NS D
5 i [] []
Toa T T

(a) Multi-encoder (b) Multi-branch as a Sub-model (c) Multi-head Attention

Figure 6.8: Multi-branch architectures. There are two inputs: a sentence (denoted by x) and
the syntax tree of the sentence (denoted by t). In the multi-encoder architecture (see sub-figure
(a)), two encoders are constructed to encode x and t, respectively. A combination model
then takes the outputs of the encoders and produces a combined representation of x and t.
The idea of multi-branch networks can be used for designing sub-models of the encoder. A
simple example is that we create multiple paths in parallel for some layers of the encoder (see
sub-figure (b)). Another example is multi-head attention (see sub-figure (c)) where we use
different heads to learn different representations.

represent the previous sentence in the same document. We thus have a context-aware model by
combining the two encoders [Voita et al., 2018; Li et al., 2020a]. Furthermore, the architectures
of the encoders do not need to be restricted to Transformer, and we can choose different models
for different branches. For example, as a widely-used 2-branch encoding architecture, we can
use a CNN-based encoder to model local context, and a Transformer encoder to model global
context [Wu et al., 2020].

Sub-models of a Transformer model can also be multi-branch neural networks. See Figure
6.8 (b) for an example involving two self-attention branches. One is the standard self-attention
network Attseir(H). The other is the syntax-aware self-attention network AttSynge(H). The
output of the self-attention model is a linear combination of the outputs of these two branches
[Xu et al., 2021b], given by

Hself = - Attse]f(H) + (1 — Oé) . AttSynseH(H) (660)

where « is a coefficient of combination. H.j¢ can be used as usual by taking a layer normal-
ization function and adding a residual connection, and so the overall architecture is the same
as standard Transformer models.

Multi-head attention networks can also be viewed as forms of multi-branch models. There-
fore, we can provide guidance from syntax to only some of the heads while keeping the rest
unchanged [Strubell et al., 2018]. This approach is illustrated in Figure 6.8 (c) where only one

6.2.4

24 Chapter 6. Transformers

head of the self-attention sub-layer makes use of syntax trees for computing attention weights.

Multi-scale Models

In linguistics, syntax studies how sentences are built up by smaller constituents. Different
levels of these constituents are in general organized in a hierarchical structure, called syntactic
hierarchy. It is therefore possible to use multiple levels of syntactic constituents to explain
the same sentence, for example, words explain how the sentence is constructed from small
meaningful units, and phrases explain how the sentence is constructed from larger linguistic
units.

Multi-scale Transformers leverage varying abstraction levels of data to represent a sentence
using diverse feature scales. A common approach is to write a sentence in multiple different
forms and then to combine them using a multi-branch network [Hao et al., 2019]. For example,
consider a sentence

The oldest beer-making facility was discovered in China.
We can tokenize it into a sequence of words, denoted by
Xwords = Lhe oldest beer-making facility was discovered in China .
Alternatively, we can write it as a sequence of phrases by using a parser, denoted by
Xphrases = [The oldest beer-making facility [np [was discovered in China]vp [.].

The simplest way to build a multi-scale model is to encode Xyords and Xphrases USing two
separate Transformer encoders. Then, the outputs of these encoders are combined in some way.
This leads to the same form as Eq. (6.59), and we can view this model as an instance of the
general multi-encoder architecture.

Both Xords and Xpprases can be viewed as sequences of tokens, for example, Xyorgs has
nine word-based tokens, and Xpprases has three phrase-based tokens’. However, involving
all possible phrases will result in a huge vocabulary. We therefore need some method to
represent each phrase as an embedding in a cheap way. By treating phrase embedding as a
sequence modeling problem, it is straightforward to learn sub-sequence representations simply
by considering the sequence models described in the previous chapters and this chapter. Now
we have a two-stage learning process. In the first stage, we learn the embeddings of input units
on different scales using separate models. In the second stage, we learn to encode sequences
on different scales using a multi-branch model.

More generally, we do not need to restrict ourselves to linguistically meaningful units in
multi-scale representation learning. For example, we can learn sub-word segmentations from
data and represent an input sentence as a sequence of sub-words. This results in a hierarchical

5 Xphrases comprises three tokens The oldest beer-making facility, was discovered in China, and ..

6.2.5

6.2 Syntax-aware Models 25

representation of the sentence, for example, sub-words — words — phrases. While the learned
sub-words may not have linguistic meanings, they provide a new insight into modeling words
and phrases, as well as a new scale of features. Also, we do not need to develop multiple
encoders for multi-scale modeling. An alternative approach is to take representations on
different scales in the multi-head self-attention attention modules, which makes it easier to
model the interactions among different scales [Guo et al., 2020; Li et al., 2022b].

A problem with the approaches described above, however, is that the representations (or
attention weight matrices) learned on different scales are of different sizes. For example,
in the above examples, the representation learned from Xy,.qs 1S @ 9 X d matrix, and the
representation learned from Xpprases 1 @ 3 X d matrix. A simple solution to this problem
is to perform upsampling on the phrase-based representation to expand it to a 9 x d matrix.
Likewise, we can perform downsampling on the word-based representation to shrink it to a
3 x d matrix. Then, the combination model Combine(-) can be the same as those described in
Section 6.2.3.

It is worth noting that multi-scale modeling is widely discussed in several fields. For
example, in computer vision, multi-scale modeling is often referred to as a process of learning
a series of feature maps on the input image [Fan et al., 2021; Li et al., 2022¢]. Unlike the
multi-branch models presented here, the multi-scale vision Transformer models make use of
the hierarchical nature of features in representing images. Systems of this kind are often based
on a stack of layers in which each layer learns the features on a larger scale (e.g., a higher
channel capacity) from the features produced by the previous layer.

Transformers as Syntax Learners

So far we have discussed syntax trees as being constraints or priors on the encoding process so
that we can make use of linguistic representations in learning neural networks. It is natural to
wonder whether these neural models can learn some knowledge of linguistic structure from
data without human design linguistic annotations. This reflects one of the goals of developing
NLP systems: linguistic knowledge can be learned from data and encoded in models.

In order to explore the linguistic properties learned by NLP systems, a simple method is to
examine the syntactic behaviors of the outputs of the systems. For example, we can examine
whether the outputs of language generation systems have grammatical errors. Another example
is to ask these systems to accomplish tasks that make sense for linguistics, though they are
not trained to do so [Brown et al., 2020]. However, examining and explaining how model
predictions exhibit syntactic abilities is not sufficient to answer the question. It is also the case
that the neural networks have learned some knowledge about language, but it is not used in
prediction [Clark et al., 2019]. Therefore, we need to see what is modeled and learned inside
these neural networks.

One approach to examining the latent linguistic structure in Transformer models is to
develop probes to see whether and to what extent these models capture notions of linguistics,
such as dependency relations and parts-of-speech. A general approach to probing is to
extract the internal representations of the models and probe them for linguistic phenomena.
For Transformer, it is usually achieved by examining the attention map and/or output of an

26 Chapter 6. Transformers

Loss (Probing Training) Output (Probing)
N T

Loss (Pre-training)
il
N~

-
I

N

FJ FJ
— —
; ;

Input (Pre-training) Input (Probing Training) Input (Probing)

(a) Training the Transformer Model (b) Training the Probing Predictor (c) Probing on New Data

Figure 6.9: An overview of probing for Transformer-based models. Given a Transformer
model (e.g., a Transformer-based language model), we first optimize the model parameters on
some unlabeled data. Then, we develop a predictor which takes the states of a hidden layer
of the Transformer model and generates outputs for a probing task (see sub-figure (a)). The
predictor can be trained as usual in which only the parameters of the predictor are optimized
and the parameters of the Transformer model are fixed (see sub-figure (b)). The Transformer
model and the predictor are used together to make predictions on new data for probing (see
sub-figure (c)).

attention layer. Then, we construct a probing predictor (or probing classifier) that takes
these internal representations as input and produces linguistic notions as output [Belinkov,
2022]. The probing predictor can be based on either simple heuristics or parameterized models
optimized on the probing task. Recent work shows that large-scale Transformer-based language
models exhibit good behaviors, called emergent abilities, in various probing tasks. However,
we will not discuss details of these language modeling systems in this chapter, but leave them
in the following chapters. Nevertheless, we assume here that we have a Transformer encoder
that has been well trained on unlabeled data and can be used for probing. Figure 6.9 illustrates
the process of probing.

Many probing methods have been used in recent work on analyzing and understanding
what is learned in neural encoders. Here we describe some of the popular ones.

* Trees. Given a trained Transformer encoder, it is easy to know how “likely” two words of
a sentence have some linguistic relationship by computing the attention weight between
them. We can use this quantity to define a metric measuring the syntactic distance
between the two words at positions ¢ and j

ds(inj) = 1-afij) (6.61)

By using this metric it is straightforward to construct the minimum-spanning tree for
the sentence, that is, we connect all the words to form a tree structure with the minimum

6.2 Syntax-aware Models 27

total distance. The tree structure can be seen as a latent tree representation of the sentence
that is induced from the neural network. While this dependency-tree-like structure can
be used as a source of learned syntactic information in downstream tasks, it says nothing
about our knowledge of syntax. An approach to aligning the representations in the
encoder with linguistic structure is to learn to produce syntax trees that are consistent
with human annotations. To do this, we need to develop a probing predictor that can be
trained on tree-annotated data. Suppose that there is a human annotated dependency tree
of a given sentence. For each pair of words, we can obtain a distance w(i, j) by counting
the number of edges between them. Then, we can learn a distance metric based on the
internal representations of the encoder to approximate w(i, 7). A simple form of such a
metric is defined to be the Euclidean distance [Manning et al., 2020]. Let A € RI*ks pe
a parameter matrix. The form of the Euclidean distance is given by

ds(i,7) = /ll(hi—h;)Al[3 (6.62)

where h; and h; are the representations produced by an encoding layer at positions ¢
and j°. Given a set of tree-annotated sentences .S, we can optimize the model by

A 1
A = argmaxzw > Jwliyg) = d2(i,)] (6.63)

1€8,j€S

where |s| is length of the sentence s, and (i,) indicates a pair of words in s. The
optimized model is then used to parse test sentences via the minimum-spanning tree
algorithm, and we can compare the parse trees against the human-annotated trees. To
obtain directed trees, which are standard forms of dependency syntax, one can update
the above model by considering the relative distance of a word to the root. More details
can be found in Manning et al. [2020]’s work. Here the probing predictor functions
similarly to a neural parser, trained to predict a syntax tree based on a representation of
the input sentence. This idea can be extended to other forms of syntactic structure, such
as phrase structure trees [Shi et al., 2016].

* Syntactic and Semantic Labels. Many syntactic and semantic parsing tasks can be
framed as problems of predicting linguistic labels given a sentence or its segments. A
simple example is part-of-speech tagging in which each word of a sentence is labeled
with a word class. A probe for part-of-speech tagging can be a classifier that takes a
representation h; each time and outputs the corresponding word class. One general
probing approach to these problems is edge probing [Tenney et al., 2019b;a]. Given a
sentence, a labeled edge is defined as a tuple

(span;,spany,label)

where span; is a span [i1, j1], and span, is another span [iz, jo] (optionally), and label

OIn general, h; and h; are the outputs of the last layer of the encoder. Alternatively, they can be weighted sums
of the outputs of all the layers.

28 Chapter 6. Transformers

is the corresponding label. Our goal is to learn a probe to predict label given span;
and span,. For example, for part-of-speech tagging, span; is a unit span [, j] for each
position j, span, is an empty span, and label is the part-of-speech tag corresponding
to the j-th word of the sentence; for dependency parsing and coreference resolution,
span; and span, are two words or entities, and label is the relationship between them;
for constituency parsing, span; is a span of words, span, is an empty span, and label
is the syntactic category of the tree node yielding span;. In simple cases, the probing
model can be a multi-layer feed-forward neural network with a Softmax output layer.
As usual, this model is trained on labeled data, and then tested on new data.

* Surface Forms of Words and Sentences. Probing tasks can also be designed to examine
whether the representations embed the surface information of sentences or words [Adi
et al., 2016; Conneau et al., 2018]. A simple sentence-level probing task is sentence
length prediction. To do this, we first represent the sentence as a single vector h’,
and then build a classifier to categorize h into the corresponding length bin. Similarly,
probes can be built to predict whether two words at positions ¢ and j are reordered in the
sentence given h; and h;. Also, we can develop probes to address conventional problems
in morphology. For example, we reconstruct the word at position j or predict its sense
with the representation h;. In addition, probing tasks can be focused on particular
linguistic problems, for example, numeracy [Wallace et al., 2019] and function words
[Kim et al., 2019].

* Cloze. Of course, we can probe neural models for problems beyond syntax and morphol-
ogy. One perspective on large-scale pre-trained Transformer models is to view them as
knowledge bases containing facts about the world. It is therefore tempting to see if we
can apply them to test factual knowledge. A simple method is to ask a probe to recover
the missing item of a sentence [Petroni et al., 2019]. For example, if we have a cloze test

Shiji was written by .

we wish the probe to give an answer Sima Qian because there is a subject-object-relation
fact (Shiji, Sima Qian, written-by). This probe can simply be a masked language model
that is widely used in self-supervised learning of Transformer encoders.

In NLP, probing is closely related to pre-training of large language models (see Chapters
7 and 8). In general, we can see probing tasks as applications of these pre-trained language
models, though probing is ordinarily used to give a quick test of the models. Ideally we would
like to develop a probe that makes best use of the representations to deal with the problems.
However, when a probe is complex and sufficiently well-trained, it might be difficult to say
if the problem is solved by using the representations or the probe itself. A common way to
emphasize the contribution of probes in problem-solving is to compare them with reasonable
baselines or conduct the comparison on control tasks [Hewitt and Liang, 2019; Belinkov,
2022].

"h can be computed by performing a pooling operation on {hy,...,hy, }

6.3

6.3.1

6.3 Improved Architectures 29
Improved Architectures

In this section we present several improvements to the vanilla Transformer model. Unlike
the previous section, most of the improvements are from the perspective of machine learning,
rather than linguistics.

Locally Attentive Models

Methods of self-attention, as discussed in Section 6.1.3, can also be viewed as learning
representations of the entire input sequence. The use of this global attention mechanism
can lead to a better ability to deal with long-distance dependencies, but this model has a
shortcoming: local information is not explicitly captured. Here we consider a few techniques
that attempt to model the localness of representations.

1. Priors of Local Modeling

One of the simplest ways of introducing local models into Transformers is to add a penalty
term to the attention function in order to discourage large attention weights between distant
positions. On the encoder-side, this leads to a form that we have already encountered several
times in this chapter.
H4 [Hk:]T
AttLocalges(H) = Softmax(T —v-G)H" (6.64)

where ~y is the weight (or temperature) of the penalty term, and G € R"*"™ is the matrix of
penalties. Each entry G (4, j) indicates how much we penalize the model given positions 7 and
j. A simple form of G(i,j) is a distance metric between i and j, for example

G(i,j) = li—]jl (6.65)
Or G(i,j) can be defined as a Gaussian penalty function [Yang et al., 2018]
(i—j)?

G(i,j) = 52 (6.66)

where o; is the standard deviation of the Gaussian distribution. For different 7, both of the
above penalty terms increase, linearly or exponentially, away from the maximum at ¢ with
distance |i — j|.
This method can be extended to the cross-attention model, like this
S¢ [Hk]T
AttLocaleoss(H,S) = SoftmaX(T —v-G)H" (6.67)

where G is an n X m matrix. Each entry of G can be defined as

)2
G(i,j) = (i = g)” (6.68)

2
207

30 Chapter 6. Transformers

where u; is the mean of the Gaussian distribution over the source-side positions. Both p;
and o; can be determined using heuristics. Alternatively, we can develop additional neural
networks to model them and learn corresponding parameters together with other parameters of
the Transformer model. For example, we can use a feed-forward neural network to predict p;
given s;.

One alternative to Eq. (6.64) (or Eq. (6.67)) treats the penalty term as a separate model and
combines it with the original attention model. For example, we can define the self-attention
model as

HY[HF]T
AttLocalser(H) = <(1 —p)- Softmax(T

where € [0,1] is the coefficient of the linear combination. Note that, to avoid empirical

)+ 8- Softmax(—- G)) H" (6.69)

choices of the values of o and 3, we can use gating functions to predict o and 5 and train these
functions as usual.

Another alternative is to use a multiplicative mask to incorporate the prior into modeling,
as in Eq. (6.54). This is given by

HJ[H*T
Vd

Here G’ € [0,1]™*™ is a matrix of scalars. The scalar G'(7,7) gives a value of 1 when i = j,

AttLocalger(H) = Softmax(oG HY (6.70)

and a smaller value as j moves away from 7. G’(i, j) can be obtained by normalizing —G(%, 5)
over all j or using alternative functions.

2. Local Attention

The term local attention has been used broadly to cover a wide range of problems and to
refer to many different models in the NLP literature. The methods discussed above are
those that impose soft constraints on attention models. In fact, local attention has its origins
in attempts to restrict the scope of attention models for considerations of modeling and
computational problems [Luong et al., 2015]. Research in this area often looks into introducing
hard constraints, so that the resulting models can focus on parts of the input and ignore the
rest. For example, we can predict a span of source-side positions for performing the attention
function given a target-side position [Sperber et al., 2018; Yang et al., 2018; Sukhbaatar
et al., 2019]. Also, attention spans can be induced from syntax trees, for example, knowing
sub-tree structures of a sentence may help winnow the field that the model concentrates on
in learning the representation. Thus, many of the syntax-constrained models are instances of
local attention-based models (see Section 6.2.4) . In addition, the concept of local attention
can be extended to develop a rich set of models, such as sparse attention models, although
these models are often discussed in the context of efficient machine learning methods. We will
see a few examples of them in Section 6.4.

In deep learning, one of the most widely used models for learning features from a restricted
region of the input is CNNs. It is thus interesting to consider methods of combining CNNs and
Transformer models to obtain the benefits of both approaches, for example, CNNs deal with

6.3 Improved Architectures 31

short-term dependencies, and self-attention models deal with long-term dependencies. One
approach is to build a two-branch sequence model where one branch is based on CNNs and the
other is based on self-attention models [Wu et al., 2020]. Another approach is to incorporate
CNN layers into Transformer blocks in some way that we can learn both local and global
representations through a deep model [Wu et al., 2019; Gulati et al., 2020].

3. Relative Positional Embedding

Relative positional embedding, also known as relative positional representation (RPR), is
an improvement to the absolute positional embedding method used in standard Transformer
systems [Shaw et al., 2018; Huang et al., 2018]. The idea of RPR is that we model the distance
between two positions of a sequence rather than giving each position a fixed representation.
As a result, we have a pair-wise representation PE(¢, j) for any two positions i and j. One
simple way to define PE(4, 7) is to consider it as a lookup table for all pairs of ¢ and j. More
specifically, let u, be a d-dimensional representation for a given distance . The form of
PE(i,7) in the vanilla RPR method is given by

PE(i,7) = Uelip(j—ikupr) (6.71)
where clip(x, kyp,) is a function that clips « in the interval [—kypy, krpr]
clip(x, kypr) = max{—kypr, min{z, kypr } } (6.72)

Thus, we have a model with parameters

Urpr = Ug (6.73)

| Werpr |

While this matrix notation is used in a relatively informal way, we can view U, as a matrix
€ RZFort1)xd ‘and select a row corresponding to clip(j — i, kypr) when RPR is required for
given ¢ and j.

Using the above method, we can define three RPR models PE?(i,5), PE(i,5) and
PE"(4,7) for queries, keys, and values, respectively. Then, following the form of Eq. (6.17),
the output of the self-attention model at position ¢ can be written as

ci = Y ai;[hY+PE"(i,))]
j=

m m
= > oihi+) a; ;PE(i,) (6.74)
=1 =1

32 Chapter 6. Transformers

block 2 T block 2 T

El FEN Sub-layer l : El FEN Sub-layer l
: Self-attention Sub-layer [Self-attention Sub-layer](—

AN

AN

El FEN Sub-layer] El FFN Sub-layer l
: : [Self-attention Sub-layer](—

H A~ H 2~ H
1 | [ug | Uz

u_zfu_zlu_sju_i| uy

5
4 (u_glu_(u_if up [Uy
3

Self-attention Sub-layer u_su_i| up | uy | us

X1 X9 Xm X1 X9 Xm 12 3 453
+ + + + + +
PE(1) PE(2) --- PE(m) PE(1) PE(2) --- PE(m)
L1 2 m
(a) Transformer without RPR (b) Transformer with RPR

Figure 6.10: Transformer encoders without and with relative positional representation (RPR).
In RPR, each pair of positions is represented as a vector PE(4, j) using a model parameterized
by U, PE(4,5) is fed into each self-attention sub-layer so that we can make use of the
positional information in intermediate steps of learning representations.

where h7 is the j-th row vector of H". This representation comprises two components:
Z;-":l a; ;hy is the basic representation, and Z;n:l a; ;PE"(4,7) is the positional representa-
tion.

The attention weight «; ; is computed in a regular way, but with additional terms PE?(3, 5)
and PE* (i, j) added to each query and key.

[bf +PE?(i,j)][h} + PE*(i,5)]"
Vd

Figure 6.10 shows the Transformer encoder architectures with and without RPR. When
RPR is adopted, PE? (i, j), PE¥ (4, j), PEY (4, §) are directly fed to each self-attention sub-layer,
and so we can make better use of positional information for sequence modeling. Note that,
the use of the clipping function (see Eq. (6.72)) makes the modeling simple because we
do not need to distinguish the relative distances for the cases |j —i| > k. This clipped

a;; = Softmax() (6.75)

distance-based model can lead, in turn, to better modeling in local context windows.

Eqgs. (6.74) and (6.75) provide a general approach to position-sensitive sequence modeling.
There are many variants of this model. In Shaw et al. [2018]’s early work on RPR, the

6.3.2

6.3 Improved Architectures 33

positional representations for queries are removed, and the model works only with PE” (4,7)
and PE"(4,), like this

k k(; T
hi[hj +PE" (i, j)]
Vd

By contrast, there are examples that attempt to improve the RPR model in computing

(6.76)

a;; = Softmax(

attention weights but ignore PE" (4, j) in learning values [Dai et al., 2019; He et al., 2021].
Instead of treating RPR as an additive term to each representation, researchers also explore
other ways of introducing RPR into Transformer [Huang et al., 2020; Raffel et al., 2020]. We
refer the interested readers to these papers for more details.

Deep Models

Many state-of-the-art NLP systems are based on deep Transformer models. For example,
recent large language models generally comprise tens of Transformer layers (or more precisely,
hundreds of layers of neurons), demonstrating strong performance on many tasks [Ouyang
et al., 2022; Touvron et al., 2023a]. By stacking Transformer layers, it is straightforward to
obtain a deep model. However, as is often the case, training very deep neural networks is
challenging. A difficulty arises from the fact that the error surfaces of deep neural networks are
highly non-convex and have many local optima that make the training process likely to get stuck
in them. While there are optimization algorithms that can help alleviate this problem, most
of the practical efforts explore the use of gradient-based methods for optimizing deep neural
networks. As a result, training a model with many Transformer layers becomes challenging
due to vanishing and exploding gradients during back-propagation. Here we consider several
techniques for training deep Transformer models.

1. Re-thinking the Pre-Norm and Post-Norm Architectures

As introduced previously, a Transformer sub-layer is a residual network where a shortcut is
created to add the input of the network directly to the output of this sub-layer. This allows
gradients to flow more directly from the output back to the input, mitigating the vanishing
gradient problem. In general, a residual connection in Transformer is used together with a layer
normalization unit to form a sub-layer. This leads to two types of architecture, called post-norm
and pre-norm. To be specific, recall from Section 6.1.4 that the post-norm architecture can be
expressed as

7z = LNorm(F'(z'™1)+z1) (6.77)

where z! and z/~! are the output and input of the sub-layer [, and Fl() is the core function
of this sub-layer. The pre-norm architecture takes the identity mapping z' outside the layer
normalization function, given in the form

7z = LNorm(F'(z'™1))+z'"! (6.78)

34 Chapter 6. Transformers

Consider the difference between the information flow in these two architectures:

* The post-norm architecture prevents the identity mapping of the input from adding to the
output of the sub-layer. This is not a true residual network, because all the information
is passed on through a non-linear function (i.e., the layer normalization unit). Thus, the
post-norm architecture is not very “efficient” for back-propagation. Wang et al. [2019]
show that the gradient of the loss of an L sub-layer Transformer network with respect to
z! is given by

L—-1 ky L—1 ki k
OE OF OLNorm(v") ‘ H <1+8F (z)) 6.79)

/. L’ K K
Z Z A% Z
0 0 P 0 Py 0

where z” is the output of the last layer, v* is a short for F*(z*~1), and E is the error
ALNorm(vF) and OFF% (%)
avk oz
normalization function and the core function, respectively. Although the equation here
k
appears a bit complex, we see that Hé;ll %Ng#(v)
This means that the error gradient will be rescaled more times if L becomes larger, and

there is a higher risk of vanishing and exploding gradients for a deeper model.

measured by some loss function.

are the gradients of the layer

is simply a product of L — [factors.

* The pre-norm architecture describes a standard residual neural network where the input
of a whole network is added to its output. We can write the gradient of the error at z' as

8£ OF ' <1+L1—[_1 8Fk(LNorm(zk)))

0z! ozl ozk
k=l
L1
OE OFE OF*(LNorm(z*))
-~ 0zb * ozl e ozk (6.80)

It is easy to see that g—E receives direct feedback regarding the errors made by the model,

Z!
oE

because the first term of the summation on the right-hand side (i.e., 5.7) is the gradient

of the model output which is independent of the network depth.

The use of the pre-norm architecture also helps optimization during early gradient descent
steps. For example, it has been found that pre-norm Transformer models can be trained by
using a larger learning rate in the early stage of training instead of gradually increasing the
learning rate from a small value [Xiong et al., 2020].

While the pre-norm architecture leads to easier optimization of deep Transformer models,
we would not simply say that it is a better choice compared to the post-norm architecture.
In fact, both post-norm and pre-norm Transformer models have been successfully used in
many applications. For example, the post-norm architecture is widely used in BERT-like
models, while the pre-norm architecture is a more popular choice in recent generative large
language models. Broadly, these two architectures provide different ways to design a deep
Transformer model, as well as different advantages and disadvantages in doing so. The post-
norm architecture forces the representation to be learned through more non-linear functions,

6.3 Improved Architectures 35

but in turn results in a complicated model that is relatively hard to train. By contrast, the
pre-norm architecture can make the training of Transformer models easier, but would be less
expressive than the post-norm counterpart if the learned models are overly dependent on the
shortcut paths.

An improvement to these architectures is to control the extent to which we want to “skip”
a sub-layer. A simple way to do this is to weight different paths rather than treating them
equally. For example, a scalar factor of a residual connection can be introduced to determine
how heavily we weight this residual connection relative to the path of the core function [He
et al., 2016; Liu et al., 2020a;b]. A more general form of this model is given by

7z = LNorm(F'(z" ') +8-2"" 1) +v-27! (6.81)

where [is the weight of the identity mapping inside the layer normalization function, and ~y
is the weight of the identity mapping outside the layer normalization function. Clearly, both
the post-norm and pre-norm architectures can be seen as special cases of this equation. That
is, if 5 =1 and ~ = 0, then it will become Eq. (6.77); if 3 =0 and y = 1, it will become
Eq. (6.78). This model provides a multi-branch view of building residual blocks. The input
to this block can be computed through multiple paths with different modeling complexities.
When § and ~ are small, the representation is forced to be learned through a “deep” model
with multiple layers of cascaded non-linear units. In contrast, when 3 and ~ are large, the
representation is more likely to be learned using a “shallow” model with fewer layers. To
determine the optimal choices of 3 and -, one can give them fixed values by considering
some theoretical properties or system performance on validation sets, or compute these values
by using additional functions that can be trained to do so [Srivastava et al., 2015]. It should
be emphasized that many other types of architecture can be considered in the design of a
Transformer sub-layer. It is possible, for instance, to introduce more layer normalization units
into a sub-layer [Ding et al., 2021; Wang et al., 2022b], or, on the contrary, to simply remove
them from a sub-layer [Bachlechner et al., 2021].

2. Parameter Initialization

As with other deep neural networks, there is interest in developing parameter initialization
methods for deep Transformer models in order to perform optimization on some region around
a better local optimum. However, initialization is a wide-ranging topic for optimization of
machine learning models, and the discussion of this general topic lies beyond the scope
of this section. Here we will discuss some of the parameter initialization methods used in
Transformer-based systems rather than the general optimization problems.

While the parameters of a neural network can be set in various different ways, most
practical systems adopt simple techniques to give appropriate initial values of model parameters.
Consider, for example, the Xavier initialization for a parameter matrix W € R%n*dout [Glorot
and Bengio, 2010]. We define a variable n by

n = gain‘\/id. —fd . (6.82)

36 Chapter 6. Transformers

where gain is a hyper-parameter which equals 1 by default. Then, each entry of W can be
initialized by using a uniform distribution

W~ U(=nn) (6.83)
or, alternatively, using a Gaussian distribution
W ~ Gaussian (0,772) (6.84)

This method can be easily adapted to initialize Transformer models having a large number
of layers. One common way is to find a more suitable value of gain by taking into account the
fact that the initial states of optimization might be different for neural networks of different
depths. For example, one can increase the value of gain as the depth of the model grows. Then,
gain can be defined as a function of the network depth in the form

gain = a-LY (6.85)

where a is the scalar, and L’ is the network depth raised to the power of b. Typically, a and
b can be positive numbers, which means that it is preferred to have larger initial values for
the parameters for deeper models. For example, Wang et al. [2022a] show that, by choosing
appropriate values for a and b, a very deep Transformer model can be successfully trained.

Eq. (6.85) assigns gain the same value for all of the sub-layers. However, it is found that
the norm of gradients becomes smaller when a sub-layer moves away from the output layer.
This consistent application of gain across the entire model could result in under-training of the
lower layers due to the gradient vanishing problem. For this reason, one can develop methods
that are sensitive to the position of a sub-layer in the neural network. The general form of such
methods is given by

gain = l% (6.86)
Here [denotes the depth of a sub-layer. If [is larger (i.e., the sub-layer is closer to the output),
gain will be smaller and the corresponding parameters will be set to smaller values. An
example of this method can be found in Zhang et al. [2019]’s work.

It is also, of course, straightforward to apply general methods of initializing deep multi-
layer neural networks to Transformer models. An example is to consider the Lipschitz
constant in parameter initialization, which has been shown to help improve the stability of
training deep models [Szegedy et al., 2014; Xu et al., 2020]. Another approach is to use
second-order methods to estimate the proper values of the parameters. For example, one can
compute the Hessian of each parameter matrix to model its curvature [Skorski et al., 2021].

For models with a large number of layers, it is also possible to pre-train some of the layers
via smaller models and use their trained parameters to initialize bigger models [Chen et al.,
2015]. That is, we first obtain a rough estimation of the parameters in a cheap way, and then
continue the training process on the whole model as usual. These methods fall into a class of

6.3 Improved Architectures 37

training methods, called model growth or depth growth.

As a simple example, consider a Transformer model (e.g., a Transformer encoder) of 2L
sub-layers. We can train this model by using the shallow-to-deep training method [Li et al.,
2020b]. First, we train an L-sub-layer model (call it the shallow model) in a regular way. Then,
we create a 2L-sub-layer model (call it the deep model) by stacking the shallow model twice,
and further train this deep model. To construct deeper models, this procedure can be repeated
multiple times, say, we start with a model of L sub-layers, and obtain a model of L2 after
I iterations. Note that many of the pre-training models are used in the same manner. For
example, for BERT-like methods, a transformer encoder is trained on large-scale data, and the
optimized parameters are then used to initialize downstream systems.

3. Layer Fusion

Another problem with training a deep Transformer model is that the prediction is only condi-
tioned on the last layer of the neural network. While the use of residual connections enables
the direct access to lower-level layers from a higher-level layer, there is still a “long” path of
passing information from the bottom to the top. One simple way to address this is to create
residual connections that skip more layers. For example, consider a group of L Transformer
sub-layers. For the sub-layer at depth [, we can build [— 1 residual connections, each con-
necting this sub-layer with a previous sub-layer. In this way, we develop a densely connected
network where each sub-layer takes the outputs of all previous sub-layers [Huang et al., 2017].
The output of the last sub-layer can be seen as some combination of the outputs at different
levels of representation of the input.

Following the notation used in the previous subsections, we denote the output of the
sub-layer at depth [by z!, and denote the function of the sub-layer by Layer!(-). Then, z' can
be expressed as

7z = Layerl(zl,...,zl_l) (6.87)

We can simply view Layer!(-) as a function that fuses the information from {z!,...,z!~1}.
There are many possible choices for Layer!(-). For example, a simple form of Layer!(-) is
given by

1 l—l)

Layer!(z!,....z = LNorm(F!(Z!)) (6.88)

7! = (24,27 (6.89)

Here ¢(-) takes the layer outputs {z',...,z!~!} and fuses them into a single representation Z'.
A simple instance of ¢(-) is average pooling which computes the sum of {z',...,z'~'} divided
by [— 1. See Table 6.2 for more examples of ¢(-).

Taking a similar architecture of a Transformer sub-layer, we can also consider a post-norm

38 Chapter 6. Transformers

Entry | Function

Average Pooling | ¢(z',...,z"71) = l—% 2;11 z"
Weighted Sum | ¢(z!,...,z' 1) = 22;11 weight, - z"
Feedforward Network | ¢(z',...,z' 1) = FFN([z',...,2'71])
Self Attention | ¢(z,...,z' 1)

Table 6.2: Fusion functions. FEN(-) = feedforward neural network, [-] = concatenating the
input vectors, and Attg¢(-) = self-attention function. All of the fusion functions can be
followed by a layer normalization function, for example, we can write the weighted sum of
(z!,....2"" 1} as ¢(z',...,2~ 1) = LNorm(3 4}, weight, - z").

form
Layer!(z!,...,.z2""!) = LNorm(Z') (6.90)
7! = ¢(Fi (27,227 (6.91)
Oor a pré-norm form
Layer'(z',...,z2"") = Z! (6.92)
Z! = ¢(LNorm(Fi(z'™Y)),z!,...,2"71) (6.93)

These models are very general. For example, a standard post-norm encoder sub-layer can
be recovered as a special case of Egs. (6.90-6.91), if we remove the dependencies of sub-layers
from 1 to [— 2, and define ¢(-) to be

o(Fl(z7Y),2!, ..,z = FlzY)+27! (6.94)

Densely connected network makes the information easier to flow through direct connections
between sub-layers, but the resulting models are a bit more complex, especially when we use
parameterized fusion functions. In practice, we typically add dense connections only to some
of the sub-layers, and so the overall networks are not very dense. For example, we only add
connections from bottom sub-layers to the last few sub-layers. Thus, the prediction can be
made by having direct access to different levels of representation [Wang et al., 2018a].

4. Regularization

In machine learning, regularization is used to avoid overfitting in training deep neural networks.
It is therefore straightforward to apply regularization techniques to Transformer models. Since
the regularization issue has been discussed in Chapter 2, here we consider some of the methods
that have not been covered yet in this book but could be used for training deep Transformer
models.

One approach to regularizing a deep Transformer model is to randomly skip sub-layers
or layers during training [Huang et al., 2016; Pham et al., 2019]. In each run of the model,
such as running the backpropgation algorithm on a batch of samples, we select each of the

6.3.3

6.3 Improved Architectures 39

sub-layers with a probability p, and stack the selected sub-layers to form a “new” model. Thus,
we essentially train different neural networks with shared architectures and parameters on
the same dataset. In this way, a sub-layer learns to operate somewhat independently, and so
overfitting is reduced by preventing the co-adaption of sub-layers. In fact, dropping out sub-
layers (or layers) and dropping out neurons are two different methods on a theme. Sometimes,
the method described here is called sub-layer dropout or layer dropout.

At test time, we need to combine all the possible networks to make predictions of some
output. A simple method to achieve this is to rescale the outputs of the stochastic components of
the model [Li et al., 2021]. As an example, suppose each sub-layer has a pre-norm architecture.
Then, the output of the sub-layer at depth [is given by

7z = p-LNorm(F'(z"!))+2'~! (6.95)

Another idea is to force the parameters to be shared across sub-layers. One of the simplest
methods is to use the same parameters for all the corresponding sub-layers [Dehghani et al.,
2018], for example, all the FFN sub-layers are based on the same feedforward network. This
method has a similar effect as the methods that add norms of parameter matrices to the loss
function for penalizing complex models. For practical systems, there can be significant benefit
in adopting a shared architecture because we can reuse the same sub-model to build a multi-
layer neural network and reduce the memory footprint. We will see more discussions on the
efficiency issue in Section 6.4.4.

Numerical Method-Inspired Models

A residual network computes its output through the sum of the identity mapping and some
transformation of the input. Such a model can be interpreted as an Euler discretization of
ordinary differential equations (ODESs) [Ee, 2017; Haber and Ruthotto, 2017]. To illustrate
this idea, we consider a general form of residual networks

7zl = fl(zl_l)—i—zl_l (6.96)

where f!(z!~!) denotes a function takes an input variable z'~! and produces an output variable
in the same space. Clearly, a Transformer sub-layer is a special case of this equation. For
example, for pre-norm Transformer, we have f!(-) = LNorm(F'(-)).

For notational simplicity, we rewrite the above equation in an equivalent form
z(l) = f(z(1-1),0)+z(l—1) (6.97)

We use the notations z(l) and f(z(+,)) to emphasize that z(-) and f(-) are functions of /. Here
we assume that [is a discrete variable. If we relax [to a continuous variable and z(l) to a
continuous function of [, then we can express Eq. (6.97) as

z(l) = Al-f(z(l—Al),1) +z(l— Al) (6.98)

40 Chapter 6. Transformers

This can be further written as

z(l) —z(l— Al)

N = f(z(l—Al),1) (6.99)
Taking the limit Al — 0, we have an ODE
dz(1)
TR f(z(1),1) (6.100)

We say that a pre-norm Transformer sub-layer (i.e., Eqs. (6.97) and (6.96)) is an Euler
discretization of solutions to the above ODE. This is an interesting result! A sub-layer is
actually a solver of the ODE.

Egs. (6.97) and (6.96) are standard forms of the Euler method. It computes a new
estimation of the solution by moving from an old estimation one step forward along . In
general, two dimensions can be considered in design of numerical methods for ODE:s.

* Linear Multi-step Methods. A linear multi-step method computes the current estima-
tion of the solutions by taking the estimations and derivative information from multiple
previous steps. A general formulation of p-step methods can be expressed as

P p+1
2(l) = > ai-z(l—i)+hY bi-f(a(l—i), [—i+1) (6.101)
=1 i=1

where h is the size of the step we move each time®, that is, Al in Eqs. (6.98) and
(6.99). {a;} and {b;} are coefficients of the solution points and derivatives in the linear
combination. Given this definition, we can think of the Euler method as a single-step,
low-order method of solving ODEs’.

* (Higher-order) Runge-Kutta Methods. Runge-Kutta (RK) methods and their variants
provide ways to compute the next step solution by taking intermediate results in solving
an ODE. As a result, we obtain higher-order methods but still follow the form of single-
step methods, that is, the estimated solution is dependent only on z(l — 1) rather than on
the outputs at multiple previous steps.

In fact, linear multi-step methods, though not explicitly mentioned, have been used in layer
fusion discussed in Section 6.3.2. For example, taking Eqgs. (6.92) and (6.93) and a linear
fusion function, a pre-norm sub-layer with dense connections to all previous sub-layers can be
expressed as

Layerl(zl,...,zl_l) = a1-zl_l—i—...—i—al,l-zl—i—bl-LNorm(Fl(zl_l)) (6.102)

8Let {to, ..., t; } denote the values of the variable [at steps {0, ...,i}. In linear multi-step methods, it is assumed
that t; = to +th.

°In numerical analysis, the local truncation error of a method of solving ODEs at a step is defined to be the
difference between the approximated solution computed by the method and the true solution. The method is called
order p if it has a local truncation error O(hP*+1).

6.3 Improved Architectures 41

This equation is an instance of Eq. (6.101) where we set h = 1 and remove some of the terms
on the right-hand side.

It is also straightforward to apply Runge-Kutta methods to Transformer [Li et al., 2022a].
Given an ODE as described in Eq. (6.100), an explicit p-order Runge-Kutta solution is given
by

p
2() = 21—+ g (6.103)
=1
1—1
g = h-f(z(l-1)+> Bij-gl—1+Xh) (6.104)
j=1

Here g; represents an intermediate step which is present only during the above process. {~;},
{Bi;} and {\;} are coefficients that are determined by using the Taylor series of z(l). To
simplify the model, we assume that the same function f is used for all {g;}. Then, we remove
the dependency of the term [— 1+ \; - b in f, and rewrite Eq. (6.104) as

i—1
g = h-flz(i-1)+> Bij-gj) (6.105)
j=1

where f(+) is a function independent of i.

As an example, consider the 4th-order Runge-Kutta (RK4) solution

1

z(l) = Z(l—1)+g(g1+2g2+2g3+g4) (6.106)

g1 = h-f(z(l-1)) (6.107)
1

g2 = h~f(z(l—1)+§g1) (6.108)
1

g3 = h-f(Z(l—1)+§g2) (6.109)

ge = h-f(z(l-1)+g3) (6.110)

These equations define a new architecture of sub-layer. For example, by setting » = 1 and
f(-) =LNorm(F'(-)), we obtain an RK4 Transformer sub-layer, as shown in Figure 6.11. This
method leads to a deep model because each sub-layer involves four runs of f(-) in sequence.
On the other hand, the resulting model is parameter efficient because we reuse the same
function f(-) within the sub-layer, without introducing new parameters.

So far in this subsection our discussion has focused on applying dynamic systems to
Transformer models by designing architectures of Transformer sub-layers. While the basic
ODE model is continuous with respect to the depth [, these methods still follow the general
framework of neural networks in which [is a discrete variable and the representational power
of the models is largely determined by this hyper-parameter. An alternative approach is to use
neural ODE models to relax the “depth” to a truly continuous variable. In this way, we can
have a model with continuous depth for computing the solution of ODEs. However, as the

6.3.4

42 Chapter 6. Transformers

=

N

z(l-1) z(l-1)

(a) Pre-norm (b) RK2

Figure 6.11: Pre-norm (a) and Runge-Kutta (b and c) sub-layer architectures. z(! — 1) denotes
the input of a sub-layer at depth [, z(l) denotes the output of the sub-layer, and f (in blue
boxes) denotes the function f(-) = LNorm(F'(-))

discussion of neural ODE lies beyond the scope of this chapter, we refer the reader to related
papers for more details [Chen et al., 2018c; Kidger, 2022].

Wide Models

Most of the methods that we have studied so far in this section are examples of learning and
using deep models. Another design choice we generally face is to determine the width for a
neural network. Typically, the width of a Transformer model can be defined as the number of
dimensions of a representation at some position of the input sequence, that is, the parameter
d. Increasing this width is a common method to obtain a more complex and more powerful
model. For example, in Vaswani et al. [2017]’s work, a wide model (called Transformer big)
leads to significant improvements in translation quality for machine translation systems. More
recently, wider models have been proposed to boost systems on large-scale tasks [Lepikhin
et al., 2021; Fedus et al., 2022b].

However, developing very wide Transformer models is difficult. One difficulty is that
training such systems is computationally expensive. While the number of the model parameters
(or model size) grows linearly with d, the time complexity of the models grows quadratic
with d (see Table 6.1). In some NLP tasks, it is found empirically that the training effort that
we need to obtain satisfactory performance is even an exponential function of the model size
[Kaplan et al., 2020]. These results suggest ways to improve the efficiency of training when
we enlarge d.

One simple method is to incrementally grow the model along the dimension of d, rather
than training the model from scratch. Suppose we have an initial model involving a d; X d;
parameter matrix W, for example, the linear transformation of each query or key in some
layer. We can train this model to obtain optimized W in a regular way. Then, we want to
extend this model to a wider model where W is replaced by a ds X do parameter matrix W.

6.3 Improved Architectures 43

Let us assume for simplicity that do = kd;. There are several ways to expand a d; X d; matrix
to a kd; x kd; matrix. The simplest of these may be to use W to fill Wa. We can write Wy

in the form
k times
w, .. W
w, = |°* g (6.111)
W, oW
p)

where p is a hyper-parameter that is used to control the norm of Wy. For example, if p = k,
W, will have the same /; norm as W;. The above equation provides a good starting point
for training the wide model, and we can train W as usual after initialization. The procedure
can be repeated a number of times for constructing a model with arbitrary width. Both this
method and the depth growth method described in Section 6.3.2 are instances of the general
method of model growth. In other words, we can obtain a larger model by extending a small
model either vertically or horizontally, or both. Alternative methods for transforming Wy to
‘W involve those considering other mathematical properties of the transformation [Chen et al.,
2015]. These models can fall under the reusable neural networks where we are concerned with
models and algorithms for transferring parameters from small models to (significantly) larger
models [Wang et al., 2023].

A second difficulty in building a wide Transformer model is the large memory requirement.
Since the feedforward network generally has a larger hidden layer than other parts of the model,
it demands relatively more memory as the model becomes wider. Consider the feedforward
network described in Section 6.1.5

H,,: = FFN(Hj,)
= ReLU(Hjn'Wh+bh)'Wf+bf (6.112)

where W), € R*din gnd W fE R *d gre the parameters of the linear transformations. dg;,
is typically several times larger than d. Therefore, W), and W ; will occupy the model if d
and dg, have very large values.

In some cases, the size of the feedforward network may exceed the memory capacity of a
single device. This problem can be addressed by using the mixture-of-experts (MoE) models
[Shazeer et al., 2017]. An MoE model consists of M expert models {e1(-),...,ear(:)}. Given
an input hy, € R%, each expert model produces an output e (h;,). The output of the MoE
model is a linear combination of {e1 (hiy),...,ear(hin)}, given by

how = 9i (hin) 1€ (hin) (6.113)

M=

=1

where ¢(-) is a gating model (also called routing model). Its output is a vector g(h;,) =
g1(hin) . gm (hin)] in which each entry g; (h;y,) indicates the weight of the corresponding

44 Chapter 6. Transformers

expert model. In many applications, it is assumed that g(h;,) is a sparse vector. This means
that only a small number of expert models are involved in computing the output. A widely-used
form of g(hjy) is given by using the Softmax layer

g(hin) = Softmax(hi, - W) (6.114)

where W, € R4*M s the parameter matrix of the layer. To enforce sparsity on g(hy,), we can
simply select the top-k entries of g(hiy), that is, we set non-top-k entries to 0. An alternative
method is to first perform top-k selection on h;, - W, and then normalize the top-k entries
using the Softmax function.

Let 7 be the set of the indices of the top-k expert models. The MoE model with top-k
routing has the following form

howe = Y gi(hin) - €;(hin) (6.115)

e

An advantage of this approach is that we can distribute different expert models to different
processors, making it possible to execute these models on parallel computing machines. In
each run of the MoE model, either during training or inference, we only need to activate and
use k expert models rather than all of the expert models. In this way, the MoE approach is
automatically learning a sparse model by limiting the number of active expert models each
time in training and inference. The sparsity is determined by the hyperparameter k, say, a
small value of k leads to a sparse model, and a large value of & leads to a dense model.

Let us return to the discussion of Eq. (6.112). It is straightforward to apply the MoE
approach to feedforward neural networks. To simplify the discussion, consider the linear
transformation of the first layer as shown in Eq. (6.112), that is, H;, - W,. We can approximate
H;, - W}, in an MoE form

Hi, - W), = Zgi(Hin) -e;(Hip)

1ET
= Zgi(Hin) [Hin - W} (6.116)
1ET

Here W), is divided into M slides (or sub-matrices) {W,ll, ,W,]l” }, written as

W, = W) o WY (6.117)

Hence each expert model e;(H;,) = Hj, - W}L solves a sub-problem of the original linear
mapping, and Eq. (6.116) can be thought of as a divide-and-conquer solution to the matrix
multiplication problem.

We can, of course, treat any feedforward neural network as an expert model, resulting in

6.3 Improved Architectures 45

Add & LayerNorm l
Feed-Forward Network —’f-) "l 7 - : B il E s

= .]] ra
: Gating
FFN FFN FFN
Model 1(9) 2(+) m()
T T T T
Hi, Hi, Hi, H;,

Figure 6.12: An illustration of the MoE model applied to an FFN sub-layer. There are M FFNs
(call them expert models) and a gating model. Each FFN is weighted by the gating model.
The output of the model is the sum of the weighted outputs of the top-k£ FFNs (denoted by 7).
Because these FFNs work independently and can be placed on different computing devices,
the model can be easily scaled up as M is larger.

the following model

How = Y gi(Hin) FFN;(Hiy) (6.118)

1em

where FEN;(-) is a “small” feedforward neural network that has the same form as Eq. (6.112).
This model is illustrated with an example in Figure 6.12. In practical implementations, all
these expert models can be run in parallel on different devices, and so the resulting system is
efficient.

Note that, from a perspective of machine learning, MoE is a general approach to combining
different neural networks, each of which is developed to address a different aspect of the
problem [Yuksel et al., 2012; Masoudnia and Ebrahimpour, 2014]. The application here is
just a special instance of the general framework of MoE. The approach is also often used to
improve the overall performance of predictors, which can be discussed in the field of ensemble
learning [Zhou, 2012].

Another difficulty in developing large Transformer models is the training instability prob-
lem. As with many other large neural networks, straightforward optimization of a Transformer
model with a large number of parameters may lead to getting trapped in local minimums, and,
occasionally, large spikes in the loss during training [Lepikhin et al., 2021; Fedus et al., 2022b;
Chowdhery et al., 2022]. Even with careful choices about hyperparameters, training strategies,
and initial model parameters, we still encounter the situation that we have to restart the training
at some point in order to jump out of the tough regions in optimization. One of the reasons for
this training difficulty is that the usual implementations of the linear algebra operations, such
as matrix multiplication, will be numerically unstable if they operates on very large vectors
and matrices. It is therefore possible to improve the training by considering numerically stable
methods instead.

6.4

6.4.1

46 Chapter 6. Transformers
Efficient Models

Efficiency is an important consideration for many practical applications of Transformer models.

For example, we may wish to run and/or train a Transformer model given memory and time
constraints. Efficiency is not a single problem, but covers a wide range of problems. While
these problems can be categorized in several different ways, there are two fundamental aspects
one may consider in an efficiency problem.

* Time and Space Efficiencies. For a given problem, we wish the model to be small and
fast, and meanwhile to be as accurate as possible in solving the problem. For example,
in some machine translation applications, we may learn a model with a small number of
parameters to fit the model to limited memory, and may develop a fast search algorithm
to achieve low-latency translation. A practical difficulty here is that improving efficiency
often leads to worse predictions. In many cases, we need to seek a trade-off between
efficiency and accuracy.

* Scalability. When the problem is scaled up, we wish that the additional effort we made
for solving this problem is as small as possible. For example, the training of a neural
network is called efficient if it takes a reasonably short time to optimize it as more
training samples are involved. Another example of efficiency is that used to measure
the amount of resources consumed in processing more inputs. For example, a machine
translation system is inefficient in translating long sentences if the memory footprint and
latency grow exponentially with the number of input words.

In this section, we will not discuss all the issues related to efficiency, which is a very
broad topic. We instead consider the widely-used efficient approaches to Transformer-based
sequence modeling and generation, some of which are refinements of model architectures, and
some of which are model-free approaches and could be used in other systems as well. Most of
the discussions here are focused on developing lightweight and fast Transformer models that
are relatively robust to long input and output sequences.

In general, the same optimization method can be applied to different modules of a Trans-
former system. To simplify the discussion, we will mostly consider self-attention sub-layers
and FFN sub-layers in this section. Our discussion, however, is general and the methods pre-
sented here can be applied to other parts of a Transformer system, for example, cross-attention
sub-layers.

Sparse Attention

In practice, the attention approaches used in Transformer are time consuming, especially when
the input sequences are long. To illustrate, consider a Transformer decoder that predicts a
distribution of words at a time given the previous words. Suppose the sequence generated
by the decoder is of size n and the input of a self-attention sub-layer is an n X d matrix S.
First, S is linearly transformed to obtain the queries S? € R™*¢, keys S* € R™*¢, and values
SU € R™*9, To simplify the notation in this subsection, we use Q, K and V to represent S¢,
S* and S?, respectively.

6.4 Efficient Models 47

The output of the self-attention sub-layer can then be computed using
Atteer(S) = AV (6.119)

where A is an n X n attention matrix or attention map

T

A = Softmax(Qz

M is a masking matrix that is used to prevent the model from seeing the right context words

+M) (6.120)

at each position, that is, for a position 4, M (i,7) = 0 for j <, and M (i,7) = —oo otherwise.
Both the time and space complexities of the self-attention sub-layer are quadratic functions of
n!'9. Therefore, if n is large, the model would be computationally expensive.

The usual implementation of the above model depends on dense matrix computation, for
example, the dense matrix multiplications in Egs. (6.119-6.120). One approach to reducing
the amount of memory and the number of floating-point calculations in a dense computation
system is to sparsify the problem. To do this, we assume that A is a sparse matrix, for example,
only o-n? entries of M have non-zero values, where o indicates how sparse the matrix is,
also called sparsity ratio. Since we only need to store these non-zero entries, the memory

requirement of A can be reduced by using sparse matrix representations. Another advantage
QK™
) - vd ;
consider only a “small” number of related positions when learning a representation.

of using a sparse attention matrix is that the models of and AV can be simplified, as we

Given a position ¢, we define the attention field 7; to be the set of positions that are
considered in computing the representation at this position. We therefore only need to compute
the dot-product attention between the given position ¢ and each position j € ;. This results in
a sparse attention matrix A’ where

Aij) = some weight j e mand j <14 6.121)
’ 0 otherwise

A simple implementation of this model involves a slight modification to M, leading to a new
masking variable M’

0 jem;and § <14
M'(i,j) = JE Aty =t (6.122)
—oo otherwise

In practical implementation, a more efficient approach is to employ sparse operations for QK™
and A’V by considering M’ and A’, respectively. That is, we save on computation for pairs
of positions whose attention weights are non-zero, and skip the rest.

There are several approaches that we can take to the sparse modeling of self-attention. We
describe briefly some of them as follows

"More precisely, the amount of memory used by the self-attention function is n? +n-d, and so it will be
dominated by the quadratic term n?ifn >>d.

48

Chapter 6. Transformers

* Span-based Attention/Local Attention. As discussed in Section 6.3.1, the use of
context in sequence modeling is local in many cases. The basic idea of local attention is
to span the attention weights to a restricted region of the input sequence. We can then
write 7r; as

m = [alal] (6.123)

(2]

where a! and a! and the left and right ends of ;. al — al + 1 determines how small the
region is, and so we can use it to control the sparsity of the attention model, for example,
ifa; — aé +1 << n, the model would be very sparse. aé and a; can be obtained by using
either heuristics or machine learning methods. The reader may refer to related papers
for more details [Luong et al., 2015; Sperber et al., 2018; Yang et al., 2018; Sukhbaatar
et al., 2019]. See Figure 6.13 (b) for an illustration of local attention.

* Chunked Attention. When a problem is too difficult to solve, one can transform it into
easier problems and solve each of them separately, as is often the case in practice. This
motivates the chunked attention approach in which we segment a sequence into chunks
and run the attention model on each of them [Parmar et al., 2018; Qiu et al., 2020].
Given a sequence {1,...,n}, we define {chunk;, ..., chunk,} to be a segmentation of the
sequence. A chunk can be expressed as a span

chunk, = [, cf] (6.124)

In the attention step, we treat each chunk as a sequence and perform self-attention on it
as usual. In other words, the representation at position ¢ is computed by using only the
context in the chunk that 7 belongs to. In this sense, this model can be thought of as some
sort of local attention model. Figure 6.13 (c) shows an illustration of this model. There
remains the issue of how to segment the sequence. There are several ways to do this.
For example, as discussed in Section 6.2.4, we can do segmentation from a linguistic
perspective, and segment the sequence into linguistically motivated units. In practical
systems, it is sometimes more convenient to segment the sequence into chunks that are
of equal length. Thus, the sparsity of the model is controlled by the size of these chunks,
for example, the use of smaller chunks would lead to a more sparse attention model.

» Strided Attention. Since the chunked attention approach enforces a hard segmentation

on the input sequence, it may lose the ability to learn representations from inputs in
different chunks. An alternative way to achieve chunk-wise attention is to allow overlap
between chunks [Child et al., 2019; Beltagy et al., 2020; Ainslie et al., 2020]. This
approach is analogous to the family of approaches that are commonly used to apply a
local model to 1D or 2D data to generate outputs of the same shape. Like CNNs, we
use a context window to represent the field of input of the attention model. The context
window slides along the sequence, each time moving forward a step of size stride. As a
special case, if stride equals the size of the context window, this model is the same as
the chunked attention model mentioned above. If stride chooses a value smaller than

6.4 Efficient Models 49

the size of the context window, the attention model will become denser. Figure 6.13
(d) shows the case of strdie = 1 where the chunk overlapping is maximized. A way to
achieve relatively sparser attention is to use a dilated context window. Figure 6.13 (e)
shows an example of the dilated strided attention model, where the context window is
discontinuous, with gaps of size 1.

* Learning Attention Fields. Because the attention field m; can be any sub-set of
{1,...,n}, we can develop more general sparse attention models by considering attention
maps beyond chunk-based patterns. The only question is how to determine which
positions the model attends to for a given position. One simple approach is to use a
computationally cheaper model to estimate the “importance” of each position. Then,
attention weights are computed only for some of the positions which are thought to
be most important [Zhou et al., 2021]. A second approach is grouping: positions are
grouped, and then the attention weights are computed only for positions in the same
group. It is often relatively easy to achieve this by running clustering algorithms on
keys and queries. For example, we can cluster keys and queries via k-means clustering.
The centroids of the clusters can be treated as additional parameters of the attention
model, and so can be learned during optimization [Roy et al., 2021]. One benefit of
learning attention fields is that the model can spread its attention broader over the
sequence. This is a useful property for many NLP problems because word dependencies
are sometimes long-range, not restricted to a local context window. See Figure 6.13 (f)
for an example of the attention map learned through this model. Alternative approaches
to learning to attend are to use sorting or hashing functions to group similar key and
query vectors [Kitaev et al., 2020; Tay et al., 2020a]. These functions can be either
heuristically designed functions or neural networks with learnable parameters. By using
these functions, we can reorder the sequence so that the inputs in the same group are
adjacent in the reordered sequence. In this way, the resulting attention map follows a
chunk-wise pattern, and the model is computationally efficient through the use of the
chunked attention approach.

* Hybrid Methods. Above, we have discussed a range of different sparse attention models.
It is natural to explore methods that combine multiple models together to make use
of their benefits in some way. A simple way to do this is to combine the attention
fields of different models. For example, in Zaheer et al. [2020]’s system, the attention
map is generated by considering three different sparse models, including local attention

(chunked attention), global attention, and random attention!’

. The resulting model
is still a sparse model, but is somewhat more robust as it involves multiple patterns
from different perspectives of attention modeling. Another way of combining multiple
attention models is to use different models for different heads in multi-head attention
[Child et al., 2019; Beltagy et al., 2020]. For example, one can use one head as a local

attention model, and use another head as a global attention model (see Figure 6.13 (g-h)).

"Here the global attention model attends each word only to a special word which accounts for the entire
sequence and is often placed at the beginning of the sequence. The random attention model attends each word to a
random set of the words of the sequence.

50

Chapter 6. Transformers

(o

(a) Standard Attention

| |
[| |
[|]|

| |

[| |

[[]|

[]]]|
(c) Chunked Attention

(e) Dilated Strided Attention

(g) Global Attention

(

(b) Span-based Attention

O ErEETrErNYEEE

(d) Strided Attention

Learning Attention Fields

(h) Hybrid Methods

Figure 6.13: Illustration of the attention maps of different models (self-attention on the decoder
side). Dark cells mean A’(7,j) # 0 (i.e., i attends to j), and light cells mean A’(7,7) =0 (i.e.,
i does not attend to j). In all these attention maps, we assume that every position attends to
itself by default (see diagonals).

6.4.2

6.4 Efficient Models 51

One disadvantage of sparse models compared to dense models is that they are not com-
putationally efficient on GPUs or CPUs. While sparse models can ideally reduce both the
memory and computation requirements, the actual rate at which work can be done by sparse
models is much slower than by dense models. In practice, it is difficult for sparse models
to approach the peak FLOPS of a GPU or CPU'2. Therefore, they are often used for the
purpose of high memory efficiency, not really for the purpose of efficient computation. On
the other hand, sparse models are still of great use to NLP practitioners in the context of
memory-efficient Transformer, especially when Transformer systems are used to deal with
extremely long sequences.

Recurrent and Memory Models

For sequence generation problems, Transformer can also be thought of as a memory sys-
tem. Consider again the general setting, in which we are given the states of previous ¢ — 1
positions, and we wish to predict the next state. In self-attention, this is done by using
the query at position i (i.e., q;) to access the key-value pairs of the previous positions (i.e.,
{(k1,v1),..., (ki—1,vi—1)}). Then, we move to position i + 1, and add (k;, v;) to the collec-
tion of key-value pairs. This procedure can be interpreted in terms of the memory mechanism
(see Chapter 4). The Transformer model maintains a memory that retains the information of
the past. When moving along the sequence, we repeat the same operation, each time generating
some output by reading the memory, and then updating the memory so that new information
could be stored in some way. This is illustrated in Figure 6.14.

1. Cache-based Memory

The memory here can be viewed as a datastore of vectors. From a machine learning perspective,
this is a non-parametric model, and the cost of accessing the model grows as a longer sub-
sequence is observed. Clearly, such a variable-length memory will generally be infeasible if
the model deals with a very, very long sequence. For the modeling problem of arbitrary length
sequences, it is common to use a fix-length memory instead. As in many NLP problems, one of
the simplest ways to do this is to consider a cache saving recent information, that is, we restrict
the modeling to a context window. Let n. be the size of the context window. The model keeps
track of the n. — 1 latest states to the current position, so that its closest successors can be
considered at each step. This means that, for each position, a self-attention sub-layer attends to
n. — 1 positions ahead, like this

Output

° o ° ° ® Input
1= 1—4 1—3 1—2 1—1 1

If we stack multiple self-attention sub-layers, a larger context window would be considered.

2FLOPS = floating point operations per second.

52 Chapter 6. Transformers

Read (self-attention)

Memory ({1,...,i —1}) i State

~~___~
Update T
A
Vas N
1 2 3 1—2 1—1 7 141
Position ¢

Read (self-attention)

Memory ({1,...,i —1,i}) State
~__
Update T
A
7 N
1 2 3 1 —2 1—1 7 1+1

Position 7 + 1

Figure 6.14: Transformer as a memory system. At position ¢, the collection of the key-value
pairs of positions {1,...,7 — 1} is used as a memory of the past information. The Transformer
model accesses this memory to generate some output, and then adds the key-value pair of
position ¢ to the memory. Moving to the next position, we repeat the same procedure of
memory access and update.

For example, a model involving two self-attention sub-layers has a context window of size
2n. — 1, as follows

/ o

W Layer 2

° (]) ®) ° Layer 1
1—5 1—4 1—3 1—2 1—1 1

Therefore, we can take a sufficiently large context by using a multi-layer Transformer
model. Note that the context window model here is essentially the same as the strided attention
model presented in the preceding section. Systems of this type are often easy to implement:
we slide a window along the sequence, and, in each move, we make predictions at the last
position of the window (for inference), or back-propagate errors (for training).

An alternative way to train this context window model is by chunked attention. We divide
the sequence into chunks (or sub-sequences) which are of the same length n.. Then, we
treat these chunks as individual training samples, and run the training program on each of

6.4 Efficient Models 53

them as usual. This approach, however, completely ignores the relationship between inputs in
different chunks. One way to address this issue is to introduce dependence between chunks.
For example, the Transformer-XL model allows every chunk to access one or more preceding
chunks [Dai et al., 2019]. In the simplest case, consider an example in which chunky, can see
its successor chunkg_ 1. Each position in chunky, can attend to all its preceding positions in
both chunk, and chunk;_.

In Transformer-XL, this approach is implemented in a simplified form. First, each position
is constrained to attend to n. — 1 previous positions so that the size of the attention field of a
position is the same in the training and inference stages. Such a method turns the problem back
to strided attention, making the implementation of the attention model straightforward. On the
other hand, the difference between the standard strided attention model and the Transformer-XL
model is that in Transformer-XL, we perform training in a chunk-wise manner. Once we finish
the training on a chunk, we directly move to the next chunk, rather than sliding the context
window a small step forward. Second, while this approach allows for connections between
chunks, the parameters of the sub-network on chunky_; are fixed, and we only update the
parameters of the sub-network on chunky, in the k-th step. See Figure 6.15 for an illustration.

The above model is similar in spirit to recurrent models because all of them require the
computation in one step to depend on the states of the preceding steps. However, it is not in
the standard form of a recurrent model, in which the output of a recurrent unit in one step is
the input in the next step. Instead, the “recurrence” is expressed by involving connections
between two different layers, that is, the output of one layer in chunky_; is used as the input
of a higher-level layer in chunky.

2. Encoding Long-term Memory

Another idea for representing the states of a sequence is to frame the task as an encoding
problem. Instead of storing all the key-value vectors during left-to-right generation, we
construct the memory of the entire “history” as a fixed number of encoded key-value vectors.
These encoded key-value vectors can be either a small sub-set of {(ky,v1),...,(kj—1,vi—1)}
or a small set of newly-generated vectors that encodes {(ki,v1),..., (ki—1,vi—1)}.

One way to do the encoding is to apply a pooling operation to {(ky,v1),...,(k;—1,vi—1)}
[Rae et al., 2019]. For example, by using average pooling, the memory contains only one
key-value pair (k, V)

i—1
_ 1
k = i_lzkj (6.125)
7j=1
1 i—1
v = i_lj;vj (6.126)

This leads to a very efficient model, and we only need to update the vectors (k, V) at a time
[Zhang et al., 2018]. Let (k[i], ¥[i]) be the state of the memory at position i. A more general

54 Chapter 6. Transformers

Layer 2

Layer 1

Output

Layer 2

Layer 1

(b) Step k + 1 of chunk-wise training

Figure 6.15: Illustration of chunk-wise training [Dai et al., 2019]. The input sequence is
divided into chunks of the same length n.. Training is performed on these chunks, each time
dealing with a chunk. In chunky, the attention field for every position in this chunk is a left
context window of size n.. Hence this model allows for attention across chunks, for example,
position ¢ — 2 in chunky, can attend to positions ¢ — 3 and ¢ — 4 in chunky_; (see sub-figure
(a)). For training, errors are back-propagated only in the sub-network for chunkyg, leaving
other parts of the model unchanged. Here we use dashed lines to denote information flow that
we consider in the forward pass but not in the backward pass. Once we finish the training on
chunky, we move to the next chunk, and repeat the same training procedure.

definition of (k[i],¥][i]) is given in a recursive form

=~

] = KMem(k[i—1],ki_1) 6.127)
[i] = VMem(v[i—1],v;_1) (6.128)

<

where KMem(-) and VMem(-) are functions that update the memory by taking both the states
of the memory at the previous position (i.e., k[i — 1] and v[i — 1]) and the new states (i.e., k; 1
and v;_1). There are many forms of the functions like KMem(-) and VMem(+) in common
use. For example, if KMem(-) and VMem(-) are weighted sum functions, we can derive the
same forms as Eqs. (6.125) and (6.126). If KMem(-) and VMem(-) are recurrent cells in

6.4 Efficient Models 55

RNNs or LSTM, we obtain a recurrent model of memory.

Extension of the above model to memories having more than one key-value pair is
straightforward. One approach is to use the memory to represent sub-sequences. Let
{(k1,¥1),...,(ks, V) } be a memory of size k. Each (k;,V;) is a snapshot of a chunk of
length n.. Thus, this memory can encode a sequence with maximum length « - n.. Then, we
can compute (Rj,vj) on the corresponding chunk using Eqgs. (6.127) and (6.128). A second
approach is to organize {(kq,v1), ..., (k«, V.)} into a priority queue. We design some function
to assign a score to any given key-value pair. The key-value pair can be inserted into the
priority queue through the push operation. Ideally, we wish to develop a scoring function to
estimate the value of a key-value pair, for example, we use another neural network to evaluate
the key-value pair. In this way, the memory is a collection of the most valuable key-value pairs
over the input sequence.

Although representing the memory as a set of vectors is an obvious choice for the model
design in Transformer, the memory is discrete and its capacity is determined by the number
of the vectors. An alternative form of memory is continuous memory. This type of model
typically builds on the idea of function approximation, in which {ki,....k;_1} or {v1,...,v;_1}
is viewed as a series of data points, and a continuous function is developed to fit these data
points. Then, we no longer need to store {ki,...,k;_1} and {vy,...,v;_1}. Instead, the
memory is represented by the functions fitting these vectors. A simple method is to combine
simple functions to fit complex curves of data points. For example, we can develop a set of
basis functions and use a linear combination of them to approximate the key or value vectors
[Martins et al., 2022]. The resulting model is parameterized by these basis functions and the
corresponding weights in the combination.

It is also straightforward to use a short-term memory and a long-term memory simultane-
ously so that we can combine the merits of both. For example, we use a cache-based memory
to capture local context, and use an efficient long-term memory that encodes the entire history
to model long-range dependency. This idea is also similar to that used in combining different
sparse attention models as discussed in the previous subsection.

3. Retrieval-based Methods

So far in this subsection, we have discussed approaches based on fixed-length models. It is
also possible to develop efficient memory models by improving the efficiency of accessing the
memories, instead of just reducing the memory capacities. One way to achieve this is to store
the past key-value pairs in a database (call it a vector database), and to find the most similar
ones when querying the database. To be more precise, given a query g, we use the database to
find a set of top-p relevant key-value pairs (denoted by €2,,) by performing similarity search
based on the dot-product similarity measure between query and key vectors. Then, we attend
q to {2, as in standard self-attention models. The idea behind this method is to consider only a
small number of elements that contribute most to the attention result. Therefore, the model is
essentially a sparse attention model which is computationally efficient. Another advantage of
this method is that it allows for fast similarity search over a very large set of vectors because of
the highly optimized implementation of vector databases. Building a memory as a retrieval

6.4.3

56 Chapter 6. Transformers

system can fall under the general framework called the retrieval-augmented approach. It
provides a simple way to incorporate external memories into neural models like Transformer
[Guu et al., 2020; Lewis et al., 2020; Wu et al., 2021].

Low-dimensional Models

In many practical applications, Transformer models are “high-dimensional”” models. This is
not only because the input and/or output data is in high-dimensional spaces, but also because
some of the intermediate representations of the data in the model are high-dimensional. As
discussed in Section 6.4.1, this high dimensionality arises in part from the steps of computing
the attention matrix as in Eq. (6.119) (for ease of presentation, we repeat the equation here)

Atter(S) = AV (6.129)

and the weighted sum of value vectors as in Eq. (6.120)

T

A = Softmax(QK

Vd

which involves large matrix multiplications QK™ and AV when the length n and the hidden
dimensionality d have large values.

+M) (6.130)

The AV and QK™ operations have a time complexity of O(n? - d) and a space complexity
of O(n?+n-d). Several previously described approaches have reduced this complexity by
using sparse models. In this subsection, we focus on methods that approximate these operations
via dense computation. One simple idea is to transform Q, K, and V into smaller matrices,
and thus to reduce the computational burden of matrix multiplication. Since Q, K, and V are
all in R"*?, we can achieve this by reducing either the n dimension or the d dimension, or
both.

1. Reducing »

Note that the output Attges(S) is required to be an n x d matrix, and so we cannot reduce the
number of queries. We instead consider reducing the number of keys and values. Suppose n’
is a number less than n, and K and V can be transformed into n’ x d matrices K’ and V' in
some way. We can obtain a “smaller” model simply by replacing K and V with K’ and Vv,
giving

!

Attgef(S) = AV (6.131)
QK"
Vd
This model is in the standard form of self-attention, but has lower time and space complexities,

thatis, O(n’-n-d) < O(n%-d) and O(n’ -n+n'-d) < O(n®+n-d). If n’ << n, the resulting
model will be linear with n.

A = Softmax(+M) (6.132)

The key problem here is how to obtain K’ and V' in a way that retains much of the

6.4 Efficient Models 57

information in K and V. There are several ways to do so. One simple method is to select the
keys and values that are thought to be important. The importance of a key (or value) can be
computed in terms of some computationally cheap measure. For example, we can sample a
small number of query-key dot-products and estimate the importance of a key by collecting
these dot-product results.

The above method is straightforward but still requires sparse operations, such as sampling
and collection. As an alternative, we can use dense computation to transform K and V to
K’ and V'. A typical choice is to use CNNs [Liu et al., 2018]. Let Conv(-) be a function
describing a set of filters that slide along the n dimension. K' is then given by

K' = Conv(K,W,,size,,stride) (6.133)

where W_. is the parameter matrix of the filters, size, is the size of the receptive field, and
stride is the number of units the filters are translated at a time. In general, we can achieve
a high compression rate by choosing large values for size, and stride. Likewise, we can
compute A4 using another convolutional function. It is worth noting that, if the parameter n’
is fixed for all samples, compression of K and V along the length dimension is essentially
the same as the fixed-length memory model as described in the preceding subsection. The
methods presented here are more general and could be applied to variable-length memories.

We might also be tempted to model the attention function by considering the attention
matrix A as a high-dimensional representation of data and then applying conventional dimen-
sionality reduction methods. For many problems, it is found that A (or more precisely QK ™)
is a low-rank matrix. In this case, we can compress A while retaining as much information
as possible. There are many ways to do so. For example, we might use a product of smaller
matrices as an approximation to A via the SVD technique (see Chapter 3). However, this
introduces computational overhead in using SVD compared with the standard attention model.
A simpler idea to directly transform K and V into smaller-sized matrices via linear mappings,
given by

K = UK (6.134)

vV = UV (6.135)

where U € R”*" and UY € R” *™ are parameter matrices. Clearly, this leads to a model
which is equivalent to that described in Egs. (6.131) and (6.132). While such a method is
intuitive and simple, it is proven to obtain a sufficiently small approximation error € if n’ is a
linear function of d/ €2 [Wang et al., 2020b].

2. Reducing d

Another approach to working in a low-dimensional space is to reduce the d dimension. One of
the simplest methods is to project all queries and keys onto a d’-dimensional space (d' < d),
and to compute the dot-product of any key-value pair in the new space. For modeling, we only
need to replace Q € R™*% and K € R"*? by new representations Q' € R"*? and K’ € R"*?',

58 Chapter 6. Transformers

We can easily modify Eq. (6.130) to use Q' and K’ in computing the attention matrix

/ nT
A = Softmax(Q[\z] +M) (6.136)
Q' and K’ are given by
Q = QU (6.137)
K = KU* (6.138)

where U? € R?*4 and U* € R¥*? are parameter matrices of linear transformations.

It is also possible to exploit kernel methods to obtain an efficient dot-product attention
model. The basic idea is to map all data points (represented as vectors) from one space to
another space, so that the problem, which might be difficult to solve in the original space, is
easier to solve in the new space. The “trick” of kernel methods is that we actually do not need
to know the mapping function, but only need to know how to compute the inner product of
vectors in the new space in one operation'?. This operation of the inner product is usually
called the kernel and denoted by K (-,-).

It is interesting to approximate A in a fashion analogous to K (-,-) in kernel methods. To
illustrate, note in Eq. (6.130) A is a fraction denoting the normalized attention weights. The
numerator can be written in the form

~ QKT
A = Mask(exp(Nz) (6.140)
(6.141)

Here Mask(+) is a function which has the same effect as using the additive masking variable
M. Then, A can be expressed as

A = DA (6.142)

where D is an n X n diagonal matrix. Each entry of the main diagonal is the sum of the entries
of the corresponding row in A, denoting the normalization factor of Softmax. Substituting this
equation into Eq. (6.130), we have

Atte(S) = DAV (6.143)

131n mathematical analysis, the inner product is a generalized notion of the dot-product. It is typically denoted
by (-,-). A formal definition of the inner product requires that (-,) satisfies several properties in a vector space.
Although the inner product has different forms in different contexts, in the Euclidean space RY, it is the same thing
as the dot-product, that is, given two vectors a € R%and b €]Rd, we have

(a,b) = a-b

d
= Sain (6.139)
i=1

6.4 Efficient Models 59

In this model, /~1(z, j) can be viewed as a similarity function over all query-key pairs in a
d-dimensional space. Here we assume that this function, which is in the form of the dot-product
of vectors, can be approximated by a kernel function

A(i,j) = Kl(aikj)
= (¢(qi),p(k;))

#(+) is a mapping from R? to RY. We can represent the queries and keys in the following form

Q' = ¢(Q)
= : (6.144)
K = ¢(K)

- : (6.145)

Then, we develop a kernelized attention model by approximating the attention weight a; ;
in the form

P(aqi)p(k;)"
> =1 ¢(ai) k)t

(6.146)

Qg

The key idea behind this kernelized attention model is that we can remove the Softmax
function if the queries and keys are mapped to a new space. Using this approximation, the ¢-th
output vector of the attention model (i.e., the i-th row vector of Attg¢(S)) is given by

n
¢ =) iV

. dlaotk)’
) ;(zy,m(qi)as(k/ﬂ)
S0 o(ao) v,

> =1 (i) o (ky)T
$ai) (71 0(k;) ;)
A(ai) (D=1 ¢(kj1)T)

(6.147)

Although the equation appears a bit complicated, the idea is simple: instead of attending the
query to all keys to obtain the attention weight «; ;, we can compute the sum of the multiplica-
tions ", o(k)Tv; € RY*4 and then multiply it with the kernelized query ¢(q;). Returning
to the notation used in Eq. (6.143), we define the i-th entry of D to be ¢(q;) D7, ¢(kjr .

60 Chapter 6. Transformers

Then, the attention model can be re-expressed in the form

Attself(S) = D_1¢(Q)¢(K)TV
= D'QK'V
= D YQEK™V)) (6.148)

Here we change the order of computation from left-to-right to right-to-left using parentheses.
Given that Q' € R"*% and K’ € R"*? | this model has time and space complexities of
O(n-d-d)and O(n-d+mn-d +d-d), respectively. Therefore, the model is linear with
respect to the sequence length n, and is sometimes called the linear attention model. One
computational advantage of this model is that we need only compute the multiplication K’ Tv
(e D20y ¢(k;)Tv;) and the corresponding normalization factor (i.e., > =1 #(k;)T) once.
The results can then be used for any query [Katharopoulos et al., 2020]. The memory needs
to maintain > %, ¢(k;)Tv; and > =1 ¢(k;)" and update them when new key and value
vectors come.

Still, there are several problems regarding this kernelized model, for example, how to
develop the feature map ¢(+) to obtain a good approximation to the standard attention model.
Interested readers may refer to Choromanski et al. [2020]’s work for more details.

A second idea for reducing d is to take sub-space models, in which a problem in a d-
dimensional space is transformed into sub-problems in lower-dimensional spaces, and the
solution to the original problem is approximated by some combination of the solutions to these
sub-problems. In a general sub-space model, a d-dimensional key vector k can be mapped
into a set of d’-dimensional vectors {K'y,..., K’ }. To simplify modeling, we can do this by
vector segmentation, that is, we segment k into 7 sub-vectors, each having d’' = % dimensions.
We can transform all query and value vectors in the same way. Then, the attention model is
applied in each of these sub-spaces.

This method, however, does not reduce the total amount of computation. As presented in
Lample et al. [2019]’s work, we can instead approximate the dot-product attention over a set
of key-value pairs by considering top-p candidates in each sub-space. More precisely, we find
p-best key-value pairs in each sub-space, which is computationally cheaper. The Cartesian
product of these p-best key sets consists of p” product keys. Likewise, we obtain p” product
values. The remaining work is simple: the d-dimensional queries attend to these d-dimensional
product keys and values. An interesting difference between this sub-space model and the
d-dimensional space model is that the generated product keys and values may be different from
any of the original key-values {(ky,v1),...,(k;—1,v;—1)}. This provides a way for learning
new representations of the past information.

So far we have discussed approaches to dimensionality reduction along either the n or d
dimension. It is straightforward to combine them to develop a “lower-dimensional” model. As
an example, suppose that we have the n — n’ reduction for keys and values, and the d — d’

6.4.4

6.4 Efficient Models 61

reduction for queries and keys. The model takes the form

/

Atteer(S) = AV
e!'T

V'

where Q' € R4 K’ ¢ R”/Xd/, and V' € R"*? are low-dimensional representations for

queries, keys and values. As usual, we can easily obtain these representations through the linear

A = Softmax(+M) (6.149)

mappings of Q, K and V. The time and space complexities of this model are O(n-n-d’) and
o -n+n'-d).

Parameter and Activation Sharing

Redundancy is common to most large-scale neural networks. As a result, many of these
models are over-parameterized, making the training and inference less efficient. One common
approach to redundancy reduction is to simplify the modeling by removing useless components
of the models, for example, we can either prune a complex model or share sub-models among
different components of it to obtain a reasonably small model. In this subsection, we discuss
methods of parameter and intermediate state sharing in Transformer models. We leave the
discussion of model transfer and pruning to Section 6.4.7.

Shared-parameter architectures are widely used in neural network-based systems. Well-
known examples include CNNs and RNNs, where the same set of parameters (or layers) is
applied across different regions of the input. This produces a “big” neural network, parts of
which have the same architecture and the same shared parameters. For Transformers as well as
other sequence models, the sharing mechanism can be applied to different levels of modeling.
A simple example, which might be not related to architecture design, is shared embedding. In
machine translation, a typical strategy for dealing with words in two languages is to develop
two separate embedding models. Alternatively, one can use a single embedding model for
both languages. The parameters of the model are then learned during the training of both the
source-side and target-side networks. Such a strategy is also often adopted in multi-lingual
sequence models, such as language models that are able to deal with texts in many different
languages.

For multi-layer neural networks, a popular method is layer-wise sharing. Suppose there is
a stack of layers, all of which have the same form

S' = Layer(S'"1;6" (6.150)

We can tie the parameters for some or all of these layers. For example, given a set of layers
{l1,1,...,1,}, we enforce the constraint 0l = @2 = ... = 0! 5o that we can obtain a smaller
model and the optimization of the model can be easier. In practice, this shared-layer model is
highly advantageous if many layers are involved, because we can repeat the same process many
times to construct a very deep neural network [Dehghani et al., 2018]. For example, sharing a
single FFN sub-layer across the Transformer encoder is found to be effective in reducing the
redundancy in machine translation systems [Pires et al., 2023].

6.4.5

62 Chapter 6. Transformers

For Transformers, sharing can also be performed in multi-head attention. An example of
this is multi-query attention [Shazeer, 2019]. Recall from Section 6.1.3 that the output of a
head h in standard multi-head self-attention can be written as

Crd = At (S?,SF,Sy)
= Attq (SW{,SW},SW}) (6.151)

Here S} = SWY, SF = SW¥, and SY = SWY are the query, key, and value, which are
obtained by linearly transforming the input S with distinct parameter matrices W¢, W%, and
W} . In multi-query attention, we share the same key and value across all the heads, but use
different queries for different heads. The form of this model is given by

Chod = Aty (SWI,SWE,SWY) (6.152)

Here the key SW’{; and value SW{ are irrelevant to h. Hence we need only compute them
once rather than computing them several times. As a result, we can make a significant saving
in computational cost, especially if the number of heads is large. Multi-query attention has
been successfully incorporated into recent large language models, such as Llama 2 [Touvron
et al., 2023b] and Falcon'4.

By extending the idea of sharing to more general situations, any intermediate states can be
shared across a neural network. For example, reusing neuron activations allows a sub-model to
be applied multiple times. For Transformers, sharing can be considered inside the process of
self-attention. It is found that the attention maps of different layers are similar in some NLP
tasks [Xiao et al., 2019]. Therefore, it is reasonable to compute the attention map only once
and then use it in the following layers.

If we make a further generalization of the sharing mechanism, we can view it as a process
by which we use the result produced previously rather than computing it on the fly. It is
thus possible to reuse the information across different runs of a neural network. A related
example is reversible residual networks, in which activations of one layer can be recovered
from the activations of the following layer [Gomez et al., 2017]. Hence we only keep the
output of the latest layer in the forward pass. Then, in the backward pass of training, we
reconstruct the output of each layer from its successor. One advantage of this reversible
treatment is that the information produced in the forward pass is shared implicitly, and the
model is memory-efficient [Kitaev et al., 2020].

Alternatives to Self-Attention

We have seen that the use of self-attention is a primary source of the large computation and
memory requirements for Transformer systems. It is natural to wonder if there are efficient
alternatives to self-attention models. Here we present briefly some of the Transformer variants
in which self-attention sub-layers are not required and we instead replace them with other
types of neural networks.

14https://falconllm.tiiAae/index.htrnl

6.4 Efficient Models 63

1. CNN as A Replacement of Self-Attention

CNNs are simple and widely used neural networks, and are considered as potential alternatives
to self-attention models. To apply CNNs to Transformers, all we need is to construct a
convolutional sub-layer to replace the self-attention sub-layer in a Transformer block. While
a filter of CNNs has a restricted receptive field and thus takes inputs from a “local” context
window, large contexts can be easily modeled by stacking multiple convolutional sub-layers.
One key advantage of CNNs is that the number of elementary operations required to run
CNNss is a linear function of the sequence length n, compared with the quadratic function
for self-attention networks. In practical systems, there have been many highly-optimized
implementations for CNNs, making it easier to apply them to sequence modeling. For further
improvements to memory efficiency, we can use lightweight CNN variants, for example,
depth-wise CNNs [Wu et al., 2018a] 1.

2. Linear Attention

As with many practical approaches to sequence modeling, there is also considerable interest in
developing linear models in order to speed up the processing of long sequences. While there
are many ways to define a linear model, one general form that is commonly used in sequence
models is

Z; = f(a-zi_l—i—b-si) (6.154)

Here s; represents some intermediate states of the model at step ¢, and z; represents the
summary of the history states up to step ¢. It is easy to see that this is a recurrent model: the
output at step ¢ depends only on the input at the current step and the output at the previous
step. As with the popular design choices in neural network-based systems, the linear part is
followed by a transformation f(-) which can be either an activation function or a feedforward
neural network. Note that, Eq. (6.154) defines a standard linear model only if f(-) is a linear
function. The use of f(-) gives greater flexibility in modeling the problem, although the term
linear model may not be applied if f(-) chooses a non-linear form.

The above formula describes a linearly structured model which can be seen as an instance
of a general family of mathematical models. Typically, it can be represented as a chain structure,

SRecall from Chapter 2 that in CNNss a filter (or a set of filters) combines the input variables in the receptive
field into an output variable (or a set of output variables) via linear mapping. Suppose that the input and output
of a problem are represented as sequences of feature vectors. Given a filter having a d x k receptive field, we
slide it along the sequence. At each step, the filter takes d X k input features and produces an output feature. This
procedure is typically expressed by

y = ReduceSum(x® W) (6.153)

where x € RF*? is the vector representation of the input, y € R is the output feature, and W € RF*4 s the weight
matrix. The function ReduceSum(-) computes the sum of all element-wise products between x and W. If we
want the input and output to have the same number of features, we can design d filters and the number of parameters
will be d? - k.

In depth-wise CNNs, we tie the weights across different feature dimensions. More precisely, all the column
vectors of W are the same. Thus, the number of the unique parameters of the model is reduced to d - k (each W
corresponding to a filter having k unique parameters).

64 Chapter 6. Transformers

or an ordered set of nodes. The model repeats the same computation process from the first
node to the last, each time taking the information from the current and previous steps and
producing an output vector that is used in the following time steps. As a result, the space and
time cost of the model scales linearly with the length of the chain.

We can extend Eq. (6.154) to a standard RNN model by simply making a linear transfor-
mation of the current input and the previous state, that is, z; = f(z;—1- W, +s;- Wy). Itis
thus straightforward to apply RNN and its variants to Transformer to obtain a hybrid model.
For example, we can use LSTM and GRUs in building some of the Transformer layers to
combine the merits of both recurrent models and self-attentive models [Chen et al., 2018b].
As the conventional recurrent models have been discussed at length in Chapter 2, we skip the
discussion of them here.

In fact, we may be more interested in developing linear attention models, so that we
can obtain an efficient system, while still retaining the benefit of globally attentive sequence
modeling. Part of the difficulty in doing this is that the form of self-attention is not linear. Let
us take a moment to see how this difficulty arises. Recall that the result of self-attention can be
written in the following form

Atteer = AV
= $(Q-K")V (6.155)

Here 4 (-) is a function that is composed by taking the scaling, exponentiating, masking
and normalization operations (i.e., ¥(a) = Normalize(MaSk(exp(%)))). Because ¢(-) is a
complex non-linear function, there is no obvious equivalent that simplifies the computation,
and we have to calculate the two matrix multiplications separately (one inside () and one
outside 7(-)). As a consequence, we need to store all the key-value pairs explicitly, and visit
each of them given a query. Not surprisingly, this leads to a model whose computational cost
grows quadratically with the sequence length n.

Although in self-attention keys and values are coupled, they are used in separate steps.
An elegant form of this model might be that allows for a direct interaction between the keys
and queries, so that we can encode the context information in a way that is irrelevant to the
queries. A trick here is that we can remove the non-linearity from () by using a feature
space mapping ¢(-) on the queries and keys, and reformulate 1)(Q - K™) (i.e., A) in a form of
matrix products. For example, recall from Section 6.4.3 that we can transform Q and K to
Q' =¢(Q) € R and K/ = »(K) e R"*? through the mapping @(+). Then, we define the
form of the attention model to be

Atter = ¢/(Q-KT).V

1y T

QKT

Q/_(K/T_V>

— D5 (6.156)

where '(a) = §. From this definition, we see that, in the case of transformed queries and keys,

6.4 Efficient Models 65

the query-key product needs not be normalized via Softmax, but needs only be normalized via a
simple factor D. Hence the model has a very simple form involving only matrix multiplication
and division, allowing us to change the order of the operations using the associativity of matrix
multiplication.

This leads to an interesting procedure: keys and values are first encoded via K’ T.v, and
then each query attends to this encoding result. Given that K’ Tov= Z?:l k' ;F “Vj, we can

write K’T -V in the form of Eq. (6.154), as follows
/T
i = pi—1tk; vy (6.157)

Here p; € R%*d i3 a variable that adds k’]T -v; at a time. Likewise, we can define another
variable v; € RY

vj = v +k] (6.158)
Then, the output of self-attention for the j-th query can be written as (see also Eq. (6.147))

q;' *n

/
qj'Vn

Attt j (6.159)

Clearly, this is a linear model, because p,, and v, are linear with respect to n. In simple

implementations of this model, only z1; and v; are kept. Each time a new query is encountered,
94K 16
Qv
One straightforward extension to the linear attention model is to allow Eqgs. (6.157) and

we update j¢; and v; using Eqgs. (6.157) and (6.158), and then compute Attr j =

(6.158) to combine different terms with different weights. For example, we can redefine fi;
and v; as

pi = a-pj+(1—a) K -v; (6.160)
vj = a-vj+(1—a)-k; (6.161)

and train the parameter a as usual. Also, we can treat a as a gate and use another neural
network to compute a [Peng et al., 2021]. Another model design is to add more terms to Eqgs.
(6.157) and (6.158) in order to give a more powerful treatment of the linear attention approach
[Bello, 2020; Schlag et al., 2021].

We have seen a general idea of designing linear models for the attention mechanism. The
key design choice of such models is to remove the Softmax-based normalization, thereby
taking linear forms of representations based on various intermediate states of the models. This
motivates several recently developed alternatives to self-attention in which efficient inference
systems are developed on the basis of recurrent models of sequence modeling [Peng et al., 2023;
Sun et al., 2023]. While these systems have different architectures, the underlying models have
a similar form, as described in Eq. (6.154). Note that, by using the general formulation of

1611 autoregressive generation, we generate a sequence from left to right. In this case, we need not consider the
keys and values for positions > j.

66 Chapter 6. Transformers

recurrent models, we need not restrict the modeling to the standard QKYV attention. Instead we
may give new meanings and forms to the queries, keys, and values.

The discussion here is also related to the memory models discussed in Section 6.4.2.
From the memory viewpoint, the keys and values can be treated as encodings of the context.
Therefore, in the linear attention model above we have a memory system in which two simple
variables p; and v; are used to represent all the context information up to position j. This
results in a fixed-length memory which is very useful in practice. There are also other linear
approaches to encoding long sequences. For example, we can view the moving average model
as an instance of Eq. (6.154), and average a series of state vectors of a Transformer system,
either weighted or unweighted.

3. State-Space Models

In control systems, state-space models (SSMs) are representations of a system whose input
and output are related by some state variables (or states for short), and whose dynamics
is described by first-order differential equations of these states. As a simple example, we
consider a continuous time-invariant linear system which is given in the form of the state-space

representation
dzg) = z(t)-A+s()-B (6.162)
o(t) = z(t)-C+s(t)-D (6.163)

Here s(t), o(t), and z(t) are the values of the input variable, output variable and state variable
at time ¢!7. In a general setting, s(t), o(t), and z(¢) may have different numbers of dimensions.
To simplify the discussion here, we assume that s(¢),0(t) € R? and z(t) € R%!3. Eq. (6.162)
is called the state equation, where A € R%*? is the state matrix and B € R?*% is the input
matrix. Eq. (6.163) is called the output equation, where C € R%*¢ is the output matrix and
D € R4 is the feedforward matrix.

These equations describe a continuous mapping from the variable s(t) to the variable
o(t) over time. They are, therefore, often used to deal with continuous time series data. To
apply this model to the sequence modeling problem discussed in this chapter, we need to
modify the above equations to give a discrete form of the state-space representation. Suppose
that {sg,s1,...,Sp } is a sequence of input data points sampled from s(t) with time step At.
Similarly, we define {z¢,z1,...,2,} and {0¢,01,...,0,} as sequences of the state and output
vectors. Given this notation, we now have a discretized version of the SSM, written as

VAR Zt_l-A—FSt'E (6164)
o = Zt'C+St'ﬁ (6165)

17We use boldface letters to emphasize that the variables are vectors.

Ina general state-space model, all these variables are represented as vectors of complex numbers. Because the
models defined on the field of complex numbers is applicable to case of real number-based state-spaces, we restrict
our discussion to variables in the multi-dimensional real number field.

6.4 Efficient Models 67

This formulation of the SSM defines an RNN with a residual connection. To be more precise,
Eq. (6.164) describes a recurrent unit that reads the input at step ¢ and the state at step ¢ — 1,
without using any activation function. Eq. (6.165) describes an output layer that sums both the
linear transformations of the state z; and the identity mapping s;.

The parameters A, B, C, and D can be induced from A, B, C and D in several different
ways, depending on how Eq. (6.162) is approximated by Eq. (6.164)!. One approach to time
discretization, called bilinear transform or Tustin’s method, gives a model in which the
parameters take the form

At At

A = (1—7-A)-(1—7-A)—1 (6.172)
B = At.B-(I—%-A)—1 (6.173)
C = C (6.174)
D =D (6.175)

An alternative approach is to use the Zero-Order-Hold (ZOH) discretization which has the

form
A = exp(At-A) (6.176)
B = At-B-(exp(At-A)—I)-(At-A)7! (6.177)
C C (6.178)
D =D (6.179)

A detailed discussion of these approaches lies beyond the scope of this book, and we refer
the interested reader to standard textbooks on control theory for further details [Astrdm and

19The discretization process can be interpreted as a numerical method of solving the differential equation. Note
that Eq. (6.162) is an ODE

= g(z(t),1) (6.166)
where
g(z(t),t) = =z()-A+s(t)-B (6.167)

There are many numerical approximations to the solutions to the ODE. For example, the Euler method of solving
the ODE can be expressed in the form (see in Section 6.3.3)

zt = z4—1+At-g(z—1,t) (6.168)
Substituting Eq. (6.167) into Eq. (6.168) yields

Zt = Zi_1 —|—At(zt,1-A+st~B)
= z—1-(I+At-A)+s¢-(At-B) (6.169)

This gives one of the simplest forms of the discretized state equations [Gu et al., 2022b], that is,

A = I+At-A (6.170)
B At-B (6.171)

68 Chapter 6. Transformers

Wittenmark, 2013].
The recurrent form of Eq. (6.164) makes it easy to compute the states and outputs over a
sequence of discrete time steps. We can unroll z; and o; in a feedforward fashion

Z():So-ﬁ 00:SO'§'C+SO D
z1=s9-B-A+s;-B 0,=50-B-A-C+s-B-C+s;-D
zy=s50-B-A° 45 B-A+sy,-B | 0y=50-B-A-C+s; - B-A-C+
so-B-C+sy-D
It is easy to write
¢ L
z = » si-B-AT (6.180)
i=0
t S B
oo = Y 5B-A"".C+ts-D (6.181)

Clearly, the right-hand side of Eq. (6.181) can be interpreted as a merged output of a convolu-
tional layer and a linear layer. Given that

t
Z B.AT'.C = [so S1 ... S¢l-
i=0

[E.Xt.é B.A'.C .. E.é] (6.182)

we define a filter having the parameters

Weim = [E A™>.C B.A™1.C .. E-c} (6.183)

where 7.y is the maximum length of the sequence®’. Then, the output of the state-space
S0
model for a sequence S = | : | can be expressed as

Sn
O = Conv(S,Wgy)+ Linear(S,D) (6.184)

where Conv(-) is the convolution operation, and Linear(-) is the linear transformation opera-
tion. Such a treatment of the state-space model enables the system to be efficiently implemented
using fast parallel convolution algorithms.

Unfortunately, the above model performs poorly in many cases. As with many deep neural
networks, careful initialization of the model parameters plays an important role in such models.

20Here ‘Wism can be represented as an nmax X d X d tensor.

6.4 Efficient Models 69

For example, restricting the state matrix to particular types of matrices is found to be useful for
learning and generalizing on long sequences [Gu et al., 2022a].

Another problem with the basic state-space model is that it involves multiplication of
multiple matrices. If the sequence is long (i.e., n is a large number), computing A" will be
computationally expensive and numerically unstable. One of the most popular approaches to
developing practical state-space models for sequence modeling is diagonalization. The basic
idea is that we can transform a state-space model into a new state-space where A (or A) is
diagonalized. Given a state-space model parameterized by (A, B, C,D), we can define a new
state-space model (UAU~!,BU!, UC, D) by introducing an invertible matrix U. It is easy
to prove that the two models are equivalent under the state-space transformation U?!. By using
this state-space transformation, and by noting that A (or A) can be written as a canonical
form P~ AP?2, we can enforce the constraint that A (or A) is a diagonal matrix, giving rise
to diagonal state-space models. To illustrate, consider the filter used in the convolutional
representation of the state-space model (see Eq. (6.182)). Assuming that A = P~'AP, we
can write B- A" - C as

B-A'.C = B- (P 'AP)'.C
B (P 'AP)- (P 'AP)---(P'AP)-C
B-P). A" (P-C) (6.186)

—

Since A is a diagonal matrix, we can efficiently compute A’ by simply raising all the entries
of A to the ¢-th power. We then have a computationally cheaper model, in which

A" = A (6.187)
B B-P! (6.188)
C = P.C (6.189)
D =D (6.190)

More detailed discussions of diagonal state-space models in sequence modeling can be found
in Gu et al. [2021]’s work.

The application of state-space models to Transformer is simple. Each self-attention sub-
layer is replaced in this case by an SSM sub-layer as described in Eqs. (6.164) and (6.165).
As we have seen there is a close relationship between state-space models and both CNNs and
RNNs. For sequence modeling, we can deal with a sequence of tokens either sequentially
as in RNNSs, or in parallel as in CNNs. This leads to a new paradigm that takes both the
sequential view and the parallel view of the sequence modeling problem — for training, the

2IA state space transformation can be seen as a process of mapping all states from the old space to the new space,
by

s't) = st)-U (6.185)

22\ denotes a diagonal matrix.

6.4.6

70 Chapter 6. Transformers

system operates like CNNs to make use of fast parallel training algorithms; for prediction,
the problem is re-cast as a sequential update problem which can be efficiently solved by
using RNN-like models. It should be noted, however, that state-space models are found to
underperform Transformer models for NLP problems, such as language modeling, although
they have achieved promising results in several other fields. Further refinements are often
needed to make them competitive with other widely used sequence models [Fu et al., 2022].

While the formalism of state-space models is different from those we discussed in this
chapter, it provides a general framework of sequence modeling in which the problem can be
viewed from either of two different perspectives and we choose different ones for different
purposes. Several recent sequence models were motivated by this idea, leading to systems
exhibiting properties of both parallel training and RNN-style inference [Orvieto et al., 2023;
Sun et al., 2023].

Conditional Computation

So far in our discussion of efficient Transformer models, we have assumed that the model
architecture is given before beginning the training of a model and is then fixed throughout. We
now turn to the case of learning efficient model architectures. Without loss of generality, we
can write a model in the form

y = Model(x,g(x)) (6.191)

where x and y are the input and output of the model. g(x) is a model function that returns
the model architecture and corresponding parameters for the given input x. In general, we
adopt the convention prevalent in learning problems of using a fixed model architecture and
learning only the parameters, say, g(x) = 6. In this case, the goal of learning is to find the
optimal values of the parameters given the model architecture and training data. On test data,
we make predictions using the same model architecture along with the optimized parameters.

A natural extension of this approach is to consider the learning of both the model archi-
tecture and parameters. In architecture learning, we would like to find a model function §(x)
that produces the optimal model architecture and parameter values given the input x. However,
searching a hypothesis space of all possible combinations of architectures and parameter
choices is extremely difficult, and so we need practical methods to achieve the goal. Two
classes of methods can be applied.

* Neural Architecture Search (NAS). In automated machine learning (AutoML),
neural architecture search is the process of exploring a space of neural networks to find
one that best fits some criterions [Zoph and Le, 2016; Elsken et al., 2019]. Once the
optimal neural network is determined, its parameters will be trained as usual, and then be
applied to new data. In order to make search tractable, several additional techniques, such
as search space pruning and fast search algorithms, are typically used. Applying neural
architecture search to the development of efficient neural networks is straightforward
[Howard et al., 2019; Tan and Le, 2019]. We need only incorporate efficiency measures
into the performance estimation of neural networks, for example, the search can be

6.4 Efficient Models 71

guided by a criterion that penalizes neural networks with high latency or excessive
memory requirements.

* Dynamic Neural Networks. The key idea of dynamic neural networks is to adapt a
neural network dynamically to various inputs [Gupta et al., 2004; Han et al., 2021].
Ideally, we would like to learn g(-), and then, for any input Xy, we apply the model
Model(Xpew, §(Xnew))- As a result, at test time we may have different model structures
and/or different parameters for different inputs. However, it is infeasible to develop
a function g(-) that can model arbitrary neural networks. In practice, g(-) is often
considered to represent a family of sub-networks of a super-network. The problem is
therefore reframed as a simpler problem to learn to choose which sub-network is used
for a given input.

From a machine learning perspective, the approaches to neural architecture search are
general and can be applied to any neural network. On the other hand, from a practical
perspective, it is still difficult to find an efficient neural network that is sufficiently powerful
and generalizes well. While neural architecture search provides interesting ideas for developing
efficient Transformer models, we make no attempt to discuss it here. Instead, the reader can
refer to the above papers to have a general idea of it, and refer to So et al. [2019], Wang et al.
[2020a], and Hu et al. [2021]’s work for its application to Transformers.

In this subsection, we focus on a particular family of approaches to dynamic neural
networks, called conditional computation. This concept was originally motivated by the
dynamic selection of neurons of a neural network [Bengio et al., 2013; 2015]. More recently, it
has often been used to refer to as a process of dynamically selecting parts of a neural network.
A narrow view of conditional computation is to see g(-) as an adaptive neural network which
dynamically reduces or grows the number of computation units (such as neurons and layers).
As a result, computation can adapt to changing conditions, and we can seek a good accuracy-
latency trade-off by this adaptation mechanism.

A common way to achieve this is to learn how to skip some computation steps so that
we can work with a necessary sub-set of the network [Xu and Mcauley, 2023]. One of the
simplest methods, sometimes called early stopping, is to stop the computation at some point
during reading or generating a sequence. This technique is often used in practical sequence
generation applications where a low latency is required. Suppose ¥i...yn,,.. 1S the longest
sequence that the system can generate, and s;...s,_, is the corresponding sequence of the
states of the top-most Transformer layer. Then we develop a model fsop(-) that takes one
hidden state s; at a time and produces a distribution of a binary variable ¢ € {stop,nonstop}

Pr(cls;) = fstop(Si) (6.192)

The generation process terminates if Pr(stop|s;) is sufficiently large, for example

Pr(stopls;) > Pr(nonstop|s;)+ Ostop (6.193)

72 Chapter 6. Transformers

where 6g10p denotes the minimal margin for distinguishing the two actions??. This formulation
is also related to the stopping criterion problem that is frequently discussed in search algorithms
for sequence generation (see Chapter 5). fiop(-) can be designed in several different ways. For
example, in many practical applications, the stopping criterion is based on simple heuristics.
Alternatively, we can define the function fsop(-) as a neural network and train it using labeled
data.

The above approach can be easily extended to handle situations in which some of the
tokens are skipped. This learning-to-skip approach is typically used in the encoding stage in
which all input tokens are given in advance. Let h;...h,, be low-level representations of a
sequence z1...T,,. Like Eq. (6.192), we can develop a model Pr(c|s;) (c € {skip,nonskip})
to determine whether the token z; can be skipped. Figure 6.16 (a) and (b) show illustrations
of early stopping and skipping. Note that the learning-to-skip method has overlap with other
lines of research on training neural networks. For example, erasing some of the input tokens in
training is found to be useful for achieving higher generalization of Transformer models [Shen
et al., 2020; Kim and Cho, 2021]. This method is also related to the downsampling methods
which will be discussed in Section 6.4.8.

A second approach to conditional computation is to resort to sparse expert models, or
its popular instance — MOoE [Yuksel et al., 2012]. In deep learning, a model of this kind is
typically built from a number of experts which are neural networks having the same structure
but with different parameters. In this way, we can construct a big model by simply increasing
the number of experts. When running this model, during either training or prediction, we
activate only a small number of the experts by some routing algorithms (see Figure 6.16 (c)).
An MoE model is an adaptive network since each time we have a new input, the model routes
it to different experts. In Section 6.3.4, we presented the basic form of MoE, and showed how
Transformer models can be scaled up by this sparse method. For a comprehensive review of
the recent advances in MoE, we refer the interested reader to Fedus et al. [2022a]’s work.

A third approach that can be used to adapt a Transformer model to changing input is to
dynamically shrink the number of layers. Several methods have been proposed to do this in
an attempt to improve inference efficiency. The simplest of these is to exit at some hidden
layers by which we can still make accurate predictions for the sample (see Figure 6.16 (d) and
(e)). To do this, we can either determine the appropriate depth for the entire sequence (call
it a sentence-level depth-adaptive model), or use an adaptive depth for each token (call it a
token-level depth-adaptive model). Here we consider token-level depth-adaptive models but
the methods can be easily extended to sequence-level depth-adaptive models.

Suppose there are L stacked layers at position i>*. We would ideally like to find a layer
in the stack, which can be used as the last hidden layer for making predictions, and whose
depth is as low as possible. However, we cannot simply use the L-th layer of the stack as the
oracle for this problem, because we never know in advance what the last layer generates during
inference. Instead, we need to determine whether the network should stop growing at depth 4,
considering the layers generated so far.

B An equivalent form of Eq. (6.193) is Pr(stop|s;) > M%

A layer is a standard Transformer block consisting of a few sub-layers.

6.4 Efficient Models 73

'l Y2 Y3 EStOp
T T T T T T
I e 1 [[]
T T T T T T
L] L] L1 [] []
T T T T T T
1 O T]]

T T T Th,y Thy Ths Thy Thy

I I e I I e e A O O O

T T T T T

Yo Y1 y2. = — T T2 T3 T4 5
(a) Early Stopping (b) Token Skipping

(Decoder) (Encoder)
Y1 Y2 Y3 Ya Ys
___________________________ T
D4

* e e I e [o N

T T T T T

I T e O O O O

T T T T T

Yo n Y2 Y3 Y4

(c) MoE (d) Sentence-level Depth Adaptation
(Encoder) (Decoder)

Y1 Y2 Y3 Ya Ys Y1 Y2 Y3 Y4 Ys
1 T T T
=211 ITgemll]
L1 [L1 [[] T L1 [
T T T T T T T
I o e O O A B [] [] []
|¢II¢II¢IITII¢I |¢l| l|¢l| l|¢l
T T T T T T T T T T
Yo Y1 Y2 Y3 Ya Yo U Y2 Y3 Ya

(e) Token-level Depth Adaptation (f) Layer Skipping

(Decoder)

(Decoder)

Figure 6.16: Methods of conditional computation, including early stopping, token skipping,
MOoE, sentence-level depth adaptation, token-level depth adaptation, and layer skipping. While
these methods are illustrated using either the encoding or decoding process, most of them can
be applied to both Transformer encoders and decoders.

74 Chapter 6. Transformers

Now suppose we have a Transformer decoder which produces a distribution over a vocabu-
lary V at each step. As usual, we denote the output of the [-th layer at step ¢ by sé. For each sé,
we create an output layer that produces a distribution pé over the vocabulary (call it an early
exit classifier), given by

p. = Softmax(s!-W') (6.194)

where W/ € R IVl is the parameter matrix. Hence we have L — 1 additional output layers,
each corresponding to a hidden layer from depth 1 to L — 1. At training time, we consider the
cross-entropy losses of {p}, . piL _1}, and train these layers together with the Transformer
model. At test time, the depth of the network grows as usual, and we use {pll, e pi} and/or
{s},...,sl} to determine whether we should exit at the I-th layer. There are several exit criteria,
for example,

* Common criteria are based on measures of the confidence of predictions. A simple
method is to compute the entropy of p!, and exit if this entropy is above a pre-defined
value.

* Alternatively, one can view the maximum probability of the entries of pé as the confi-
dence of the prediction.

* Instead of considering the output of a single layer, we can also examine the change in
the outputs or hidden states over a number of layers. For example, we can measure the
-1 -1

similarity between p; ;

i and st. If the similarity is above a given

and p! or between s
threshold, then we say that the output of the neural tends to converge and the number of

layers can stop growing.

* The above methods can be extended to examine the change in the predictions made by
the classifiers associated with the layers. For example, the model can choose to exit if
the predictions made by the classifiers remain unchanged for a number of layers.

Discussions of these criteria can be found in the related papers [Xin et al., 2020; Zhou
et al., 2020; Schuster et al., 2022]. There are a variety of ways to improve these early exit
methods. One is to explore other forms of the prediction for each layer. For example, we can
develop a model that directly predicts how many layers we need to model the input [Elbayad
et al., 2020]. Another line of research on early exit focuses on better training for these models,
for example, we can consider various loss functions for training the classifiers [Schwartz et al.,
2020; Schuster et al., 2022]. In addition, there is also interest in learning the combination
of the outputs of multiple layers so that we can make predictions by using multiple levels of
representation [Zhou et al., 2020; Liao et al., 2021].

A problem with token-level adaptive-depth models is that the representations at certain
depths may be absent in the previous steps. In this case, standard self-attention is not directly
applicable, because we may not attend to the previous tokens in the same level of representation.
For training, this can be addressed by using all the L layers of the full model. For inference,
we can either duplicate the layer from which we exit to fill up the layer stack, or modify
the self-attention model to enable it to attend to the representations of the previous tokens at

6.4.7

6.4 Efficient Models 75

different depths.

It is also possible to select any sub-set of the layers for constructing a shallow network.
The adaptive models therefore can be generalized to skipping models (see Figure 6.16 (f)).
As with the early exit problem, the skipping problem can be framed as a learning task, in
which a classifier is trained to decide whether a layer should be dropped. The learning-to-skip
problem has been studied in the field of computer vision [Wang et al., 2018b; Wu et al., 2018b].
However, learning a skipping model for large-scale, deep neural networks is difficult. For
practical systems, it still seems reasonable to use heuristics or cheap models to obtain a neural
network having skipped layers, which has been discussed in recent pre-trained NLP models
[Wang et al., 2022c; Del Corro et al., 2023].

Model Transfer and Pruning

Many large Transformer models have been successfully developed to address NLP problems.
A common question is: can we transform a large, well-trained model into a smaller one that
allows for more efficient inference? At a high level, this can be thought of as a transfer
learning problem in which the knowledge is transferred from one model to another. But we
will not discuss this general topic, which spans a broad range of issues and models, many
outside the scope of this chapter. Instead, we narrow our discussion to two kinds of approaches
that are widely used in learning small neural networks from large neural networks.

1. Knowledge Distillation

Knowledge distillation is a process of compressing the knowledge in a large neural network (or
an ensemble of neural networks) into a small neural network [Hinton et al., 2015]. In supervised
learning of neural networks, the objective functions are generally designed to represent some
loss of replacing the true answer with the predicted answer. Hence we can minimize this loss
so that the models are trained to output the true answer. While models are typically optimized
on the training data in this manner, what we really want is to generalize them to new data.
This is, however, difficult because we have no information about generalization in training
with the ground-truth. In knowledge distillation, instead of forcing a model to stay close to
the ground-truth output, we train this model to generalize. To do this, we directly transfer the
knowledge (i.e., the generalization ability) of a pre-trained model to the model that we want to
train.

A frequently used approach to knowledge distillation is teacher-student training. A
teacher model is typically a relatively large neural network that has already been trained and can
generalize well. A student model is a relatively small neural network, such as a neural network
with fewer layers, to which we transfer the knowledge. A simple way to distill the knowledge
from the teacher model into the student model is to use the output of the teacher model as the
“correct” answer for training the student model. Suppose we have a teacher Transformer model
that can generate a sequence of distributions {Pr(-|yo,X), ..., Pr(-|yo...yn—1,%)} for the input
x. To keep the notation simple, we denote the distribution Pr(-|y...y;—1,%) as p;. Similarly,
we denote the output of the student Transformer model for the same input as p;. As usual, we
consider a loss function Loss(p;,p;) (such as the cross-entropy function) for computing some

76 Chapter 6. Transformers

distance between p; and p;. Then, we can define the loss over the entire sequence as

L(x,0) = %ZLoss(ﬁi,pi) (6.195)
=1

125

where 6 denotes the parameters of the student model=. Using this loss, we can optimize 6,

for any given set of source sequences {x1,...,Xx }, in such a way as to minimize the quality
Z;cvzl L(x, 6)

Several different extensions to this basic method have been developed to model the problem
of knowledge transfer between two models. A simple way is to use the hidden states instead
of the output probabilities as the training targets [Romero et al., 2014]. In this case, the
objective is to minimize the difference between some hidden states of the teacher model and
the corresponding states of the student model. Rather than using the outputs of various layers as
the targets for training the student model, another technique is to model the relations between
samples and train the student model by minimizing some differences between the relation
encodings of the teacher and student models [Park et al., 2019; Peng et al., 2019]. For example,
we can develop a relation encoding model based on the Transformer architecture. The goal is
then to optimize the student model so that its corresponding relation encoding of a group of
samples is as close as possible to that of the teacher model.

For sequence generation problems, a special case of knowledge distillation, which can be
viewed as a means of data augmentation, is often used for developing lightweight models
[Kim and Rush, 2016]. For example, consider the problem of transferring the translation ability
of a well-developed machine translation model (i.e., the teacher model) to a new model (i.e.,
the student model). Given a set of source-side sentences {x1,...,Xx }, we can use the teacher
model to translate each xj, to a target-side sentence y. Then, by treating x; and y, as paired
sentences, we obtain a bilingual dataset consisting of {(x1,y1),..., (Xx,¥x)}. We can use
this bilingual dataset as the labeled dataset to train the student model as usual. One advantage
of this data argumentation method is that it is architecture free, and we do not even need to
understand the internal architectures of the teacher and student models. Hence we can apply
this method if we have a black-box teacher model. More detailed discussions of knowledge
distillation can be found in Gou et al. [2021] and Wang and Yoon [2021]’s surveys.

2. Structured Pruning

Pruning is among the most popular of the model compression methods and has been applied
to a broad range of systems. One common approach to pruning is unstructured pruning,
by which we activate only some of the connections between neurons. However, as with
most sparse models, models pruned in this way typically require special implementations and
hardware support, which in turn reduces their efficiency in some applications. A simple but
more aggressive way to do pruning is to use structured pruning. In deep learning, structured
pruning is a technique that removes a group of neurons or connections together. For example,
we can remove an entire layer of neuron from a neural network to obtain a shallower model.

2 We omit the parameters of the teacher model because they are fixed throughout the training process.

6.4.8

6.4 Efficient Models 77

As multi-layer, multi-head neural networks, Transformers are naturally suited to structured
pruning, and we can prune a Transformer network in several different ways. For example, we
can prune some of the heads in multi-head attention [Voita et al., 2019; Michel et al., 2019], or
some of the layers in the layer stack [Hou et al., 2020; Kim and Awadalla, 2020].

Formally, we can represent a neural network as a set of parameter groups {61,...,0gr},
each corresponding to a component or sub-model of the model. Our goal is to find a sub-set
of {01,...,0r} by which we can build a model that yields good performance, while having a
lower model complexity. However, a simple search of such a model is infeasible because there
are a combinatorially large number of possible model candidates and evaluating all of these
models is computationally expensive.

One approach to structured pruning is to randomly prune components of a model. One
can run the random pruning process a number of times to generate a pool of model candidates
and select the best one from the pool. Another approach is to use heuristics to decide which
components are not important and can be removed. Common measures of the importance of a
parameter group 6, include various qualities based on norms of the weights or gradients of 6,
[Santacroce et al., 2023]. We can prune 6, if the values of these measures are below (or above)
given thresholds. A third approach is to frame the pruning problem as an optimization task by
introducing trainable gates indicating the presence of different components [McCarley et al.,
2019; Wang et al., 2020c; Lagunas et al., 2021]. The pruned model can be induced by using
the trained gates. Note that, in many cases, pruning is not a post-processing step for a given
trained model, but part of the training.

Sequence Compression

In sequence modeling and generation problems, the time and space complexities are strongly
influenced by the length of the input or output sequence, and we prefer the sequence to be short.
This is particularly important for Transformer models, as their time and space complexities are
quadratic with the sequence length, and the memory footprint and latency can be heavy burdens
if the sequence is very long. In the previous subsections, we have discussed modifications
to the Transformer architecture for dealing with long sequences. Here we instead consider
methods for compressing the sequences into ones with acceptable lengths.

One simple approach is to map the input sequence to a fixed-size representation. For
example, using the recurrent models discussed in Section 6.4.2, we can encode a sequence
of vectors into a single vector. This method can be easily extended to generate a “larger’
representation so that this representation can retain more information of the original input.

B

For example, we can select a fixed number of the hidden states over the sequence to form a
new sequence of fixed-length. Another way to represent a variable-length sequence as a fixed-
length sequence is to attend the input vectors to some hidden states, usually a fixed number of
learnable hidden representations. In Jaegle et al. [2021]’s work, this is done by introducing r
hidden representations {uy, ..., u, }, and then attending the input vectors {X1,...,X;, } to these
hidden representations. The attention model can be a standard QKV attention model in which
we view {uy,...,u, } as queries and {x1,...,X,, } as keys and values. The output of this model
is a sequence of 7 vectors, which can be used as fixed-length input to downstream systems.

6.4.9

78 Chapter 6. Transformers

A second approach is to use downsampling to compress the sequence into a shorter one.
A typical method of downsampling is strided convolution, which has been widely used in
computer vision and speech processing. For example, suppose there is a sequence of m vectors
€ R?. We can develop a filter with a width of 2 and a stride of 2. By taking the sequence as
input, the filter produces a sequence of % new vectors € R, and so we have a reduction rate
of 2. Also, we can stack multiple convolutional layers or pooling layers to achieve a desired
level of length reduction, called progressive downsampling. However, it seems inevitable
that downsampling will lead to information loss [Han et al., 2020; Burchi and Vielzeuf, 2021].
We need to consider a trade-off between the compressed sequence length and the performance
of downstream systems [Xu et al., 2023b].

In NLP, the problem of sequence compression is also closely related to the problem of
tokenizing input strings. Therefore, tokenization is a practical approach that can be taken to
address the length issue. Segmenting a string into small tokens (such as characters) generally
reduces the sparsity of the data, which makes it easier to learn the embeddings of these
tokens, but such approaches often lead to a long sequence. By contrast, we will have a shorter
sequence if we segment the input string into larger units, but this will suffer from sparse data.
In deterministic tokenization methods, which produce tokenization results using statistics
collected from the entire dataset, the sequence length can be somehow controlled by adjusting
some hyper-parameter, for example, in byte pair encoding [Sennrich et al., 2016], increasing
the size of the vocabulary generally reduces the number of the resulting tokens. Another way
to obtain an appropriate sequence of tokens is to use a model for choosing among tokenization
candidates [Kudo, 2018; Provilkov et al., 2020]. As with many probabilistic models for text
generation, in this case, we can add priors to the criterion for tokenization selection so that we
can express a preference for shorter sequences over longer sequences.

A fourth approach to sequence compression is to drop some of the tokens in the sequence.
For example, in many practical applications, we chop the sequence when its length exceeds a
threshold. We can relate this to the early stopping and skipping approaches in conditional com-
putation. Thus the methods discussed in Section 6.4.6 are directly applied. The token dropping
methods can also be viewed as pruning methods, called token pruning. By discarding tokens
that are less important for representing the entire sequence, token pruning can significantly
reduce the sequence length while maintaining the performance of NLP systems on downstream
tasks [Kim et al., 2023].

High Performance Computing Methods

So far in this section, we have discussed efficient Transformer models from the perspectives
of deep learning and NLP. However, we have not considered their efficiency on hardware.
As modern hardware provides a variety of modes for running a program, the practical time
and memory footprint savings generally depend on the specifications of hardware systems.
One line of research on efficient use of computing resources explores methods of parallel
computing. There have been many attempts to develop large-scale Transformer models by
using a cluster of machines. Typically, scaling Transformers to models with billions or even
tens of billions of parameters requires a careful design of parallelism strategies for sharding

6.4 Efficient Models 79

the big networks. More efficient implementations of such systems also need considerations of
networking and communication in the cluster, as well as the utilization of sparse models that
activate only a small sub-set of the parameters for each sample, enabling the use of very large
models. Most of these methods have been studied in an extensive literature on how to scale
up the training of deep neural networks like Transformers efficiently [Lepikhin et al., 2021;
Barham et al., 2022; Fedus et al., 2022b]. The results of these studies were foundational to
many follow-on works on investigating the scaling laws for large language models [Brown
et al., 2020; Chowdhery et al., 2022]. Since large-scale distributed models are generic and not
specialized to the case of Transformers, we skip the discussion of them here. The interested
readers can refer to the above papers for more detailed discussions.

In this subsection, we consider hardware-aware methods to seek greater computational
efficiency for Transformer models. We first consider a simple but widely used method that aims
to store and execute neural networks using lower or mixed-precision number representations
[Gholami et al., 2022]. Conventional neural networks are typically based on single-precision
and/or double-precision floating-point representations of data. While single-precision floating-
point data types provide a sufficiently precise way to represent parameters and intermediate
states in most cases, in some applications, they are not essential. As an alternative, one can use
half-precision (or even lower-precision) formats in storing floating-point numbers for neural
networks. The size of the resulting model is thus half the size of the original model. One
advantage of using half-precision floating-point representations is that, although processing
such data types requires new APIs of linear algebra operations and hardware support, it does
not change the model architecture, and so we need only a slight modification to the systems.
For example, half-precision floating-point representations can be applied to either training or
inference of Transformers, or both.

Recently, the deployment of large Transformer models has been further improved by
quantizing these models. In signal processing, quantization is a process of mapping continuous
values (i.e., floating-point representations) to a set of discrete values (i.e., fix-point represen-
tations) . This process is in general implemented using a system called quantizer. In the
context of neural networks, a quantizer involves two functions — the quantization function
and the de-quantization function. The quantization function maps a floating point number to a
(lower-bit) integer. A simple quantization function is given by

Qx) = [-] (6.196)

where |-] is a rounding function®, z is the real-valued input, and s is the quantization step
size that controls the level of quantization. The quantization function is coupled with a
de-quantization function

D(r) = s-r (6.197)

With this notation, the quantizer can be expressed as D(Q(z)) = s-|%]. The difference

26| a] returns the integer closest to a.

80 Chapter 6. Transformers

between D(Q(x)) and x is called quantization error. A smaller value of s typically reduces the

quantization error. In practice, however, we wish to choose an appropriate value of s in order to

max{D(r)}
2p—1

where p is the number of bits used to represent an integer and max{D(r)} is the maximum

spread possible values of QQ(r) evenly across values of an integer, for example, s =

value for D(r). The above equations show one of the simplest cases of quantization. More
general discussions of quantization can be found in books on digital signal processing and
related surveys [Oppenheim and Schafer, 1975; Rabiner and Gold, 1975; Gray, 1998].

Applying quantization to Transformers is relatively straightforward. The idea is that
we quantize the inputs and model parameters using Q(x), and feed them to a quantized
Transformer model in which all the layers operate on integer-valued tensors. In other words,
we implement the model using integer-only arithmetic. However, the price to be paid for
this compressed model, as with many approximation approaches to deep learning, is that its
prediction is not as accurate as that of the standard Transformer model. Using integer operations
to approximate continuous-valued operations generally leads to approximation errors. These
errors will be accumulated if the quantized neural network is deep. Furthermore, Transformer
models involve components (such as self-attention sub-layers) that require relatively complex
linear algebra operations. Simply applying quantization to these sub-models will lead to
high accuracy loss. One solution is to simplify the model architecture and develop new sub-
models that is more feasible for quantization. Alternatively, a more common paradigm in
quantized neural networks is to add de-quantization functions to the neural networks so that
the output of a layer is floating-point tensors and can be used as usual in the following steps.
Consider a simple example where we multiply a real-valued input matrix a with a real-valued
parameter matrix A. We first quantize a and A, and multiply them using integer-based matrix
multiplication. The result is then de-quantized to a real-valued matrix. In this way, we obtain
an approximation D(Q(a)-Q(A)) to a- A in a very cheap way.

However, sandwiching each layer between (Q(-) and D(-) will lead to additional cost of
running Q(-) and D(-). In some practical applications, the computational overhead introduced
by Q(-) and D(-) is even bigger than the time saving of performing integer-based operations.
In general, the benefit of quantizing neural networks would be larger than its cost if the neural
networks are large. Therefore, in practice it is common to perform quantized computation
only for operations whose computational costs are high. For example, in recent large language
models, quantization is primarily applied to the multiplication of large matrices, yielding
significant time and memory savings.

While the quantization approaches can be used in both training and inference, a widely-
used approach is to get Transformer models quantized after training (call it post-training
quantization). In this approach, quantization is performed on well-trained floating-point-based
neural networks and there will be fewer quantization-related errors. However, these errors
cannot be compensated for because they exist after training. A more promising idea is to
involve quantization in training so that the model can learn to compensate for quantization-
related errors [Jacob et al., 2018; Nagel et al., 2021]. There have been several attempts to apply
quantization-aware training to Transformers [Bondarenko et al., 2021; Stock et al., 2021; Yang
et al., 2023b]. In addition to computational efficiency, another important consideration for

6.5

6.5 Applications 81

high-performance systems is the restrictions of the memory hierarchy. In general, better system
design requires considering the speeds and sizes of different levels of memory. The problem is
even more complicated when we train large Transformer models on modern hardware where
both GPUs and CPUs are used. A general principle of system design is that memory transfer
between different memory levels should be minimized. While we would ideally like to have a
large high-level memory on which we can store all the data that we need to process, in many
practical situations the size of the fast, on-chip memory is orders of magnitude smaller than
the size of data. In this case, we can re-order the memory access in the algorithms so that the
data used in nearby computation steps can be loaded into the high-speed memory at one time.
This idea motivates the development of many fast linear algebra libraries. For example, there
are matrix multiplication algorithms that are highly optimized for different shapes of input
matrices.

It is relatively straightforward to use these optimized linear algebra algorithms to build
a Transformer system. But the modules of this system are not optimized as a whole for
efficiency improvement. For example, a self-attention sub-layer involves a series of operations
of scaling, normalization, and matrix multiplication. Although each of these operations has
been implemented in several supported and efficient libraries of linear algebra, successive calls
to them still require multiple times of memory transfer when we switch from one operation
to another. In practice, a better approach would be that we keep some of the intermediate
states in the on-chip memory, and reuse them in the following computation steps instead of
fetching them again from the slow memory. For example, on modern GPUs, a simple way to
achieve this is to merge multiple operations into a single operation, known as kernel fusion.
For Transformer models, a general idea is to design data partitioning and layout strategies by
which we maximize the computation on each data block loaded into the high-performance
memory, while at the same time minimizing the memory transfer. There have been several
attempts to use these strategies to improve the attention models in Transformers [Ivanov et al.,
2021; Pope et al., 2023]. Some of these methods, such as flash attention and paged attention,
have been successfully incorporated into recent large language models [Dao et al., 2022; Kwon
et al., 2023].

Applications

Transformers have a wide range of applications, covering numerous NLP problems. While the
Transformer model introduced by Vaswani et al. [2017] is based on a standard encoder-decoder
architecture, it is mainly used in three different ways.

* Decoder-only Models. By removing the cross-attention sub-layers from a Transformer
decoder, the decoder becomes a standard language model. Hence this decoder-only
model can be applied to text generation problems. For example, given a sequence of
left-context tokens, we use the model to predict the next and following tokens.

* Encoder-only Models. Transformer encoders can be treated as sequence models that
take a sequence of tokens at once and produce a sequence of representations, each of

6.5.1

82 Chapter 6. Transformers

which corresponds to an input token. These representations can be seen as some sort
of encoding of the input sequence, and are often taken as input to a prediction model.
This encoder+predictor architecture forms the basis of many NLP systems, for example,
systems of sentence classification, sequence labeling, and so on. Pre-trained Transformer
encoders can also be used to map texts into the same vector space so that we can compute
the distance or similarity between any two texts.

* Encoder-Decoder Models. Encoder-decoder models are typically used to model
sequence-to-sequence problems. Applications include many tasks in NLP and related
fields, such as machine translation and image captioning.

Note that while most Transformer-based systems can fall into the above three categories,
the same NLP problem can generally be addressed using different types of models. For
example, recent decoder-only models have demonstrated good performance on a broad range
of problems by framing them as text generation tasks, though some of these problems were
often addressed by using encoder-decoder or encoder-only models. To illustrate how the above
models are applied, this section considers a few applications where Transformers as chosen as
the backbone models.

Language Modeling

Language modeling is an NLP task in which we predict the next token given its preceding
tokens. This is generally formulated as a problem of estimating the distribution of tokens at
position ¢ + 1 given tokens at positions 0 ~ ¢ (denoted by Pr(-|xo,...,z;) where {xq,...,z;}
denote the tokens up to position ¢). The best predicted token is the one which maximizes the
probability, given by

i1 = argmaxPr(x;y1|xo,...,x;) (6.198)
zip1€V

where V' is the vocabulary. The prediction can be extended to the tokens following %1

Tpr1 = argmaxPr(zpi|zo,....Ti Tit1, . Tk) (6.199)
Ik+1€v

This model forms the basis of many systems for text generation: given the context tokens
x1...x;, we generate the remaining tokens Z;41...2;+1 to make the sequence complete and
coherent.

As discussed in Section 6.1.1, Transformer decoders are essentially language models. The
only difference between the problem of decoding in an encoder-decoder Transformer and the
problem of language modeling is that the Transformer decoder makes predictions conditioned
on the “context” tokens on both the encoder and decoder sides, rather than being conditioned
on preceding tokens solely on one side. To modify the Transformer decoder to implement a
standard language model, the cross-attention sub-layers are simply removed and a Transformer

6.5.2

6.5 Applications 83

decoding block can be expressed as

S' = Layerg,(S.y) (6.200)
Slar = Layer,;(S"™) (6.201)

Here S' denotes the output of the block at depth I. Layer(-) denotes the self-attention
sub-layer, and Layerg, (-) denotes the FEN sub-layer. We see that this decoding block has the
same form as an encoding block. The difference between the decoding and encoding blocks
arises from the masking strategies adopted in training, because the former masks the attention
from a position ¢ to any right-context position k > ¢ whereas the latter has no such restriction.
A Softmax layer is stacked on the top of the last block, and is used to produce the distribution
over the vocabulary at each position. For inference, the Transformer decoder works in an
auto-regressive manner, as described in Eq. (6.199).

The training of this model is standard. We learn the model by repeatedly updating the
parameters, based on the gradients of the loss on the training samples. This paradigm can
be extended to the training of large Transformer-based language models, which have been
widely applied in generative Al. However, training Transformer models at scale, including
decoder-only, encoder-only, and encoder-decoder models, may lead to new difficulties, such
as training instabilities. We will discuss these issues further in the following chapters, where
large-scale pre-training is the primary focus.

Text Encoding

For many NLP problems, a widely used paradigm is to first represent an input sequence in
some form, and then make predictions for downstream tasks based on this representation. As a
result, we separate sequence modeling or sequence representation from NLP tasks. One of the
advantages of this paradigm is that we can train a sequence model that is not specialized to
particular tasks, thereby generalizing well.

Clearly, Transformer encoders are a type of sequence model, and can be used as text
encoders. Consider a Transformer encoder with L encoding blocks. The output of the last
encoding block can be seen as the encoding result. Here add a special token x to any sequence,
indicating the beginning of a sequence (written as (SOS) or [CLS]). If there is a sequence of
m+ 1 input tokens xgx1...7.,, the output of the encoder will be a sequence of m + 1 vectors
hg hf ...hL Since x is not a real token and has a fixed positional embedding, it serves as a tag
for collecting information from other positions using the self-attention mechanism. Hence hg
is a representation of the entire sequence, with no biases for any specific tokens or positions. In
many cases, we need a single representation of a sequence and take it as input to downstream
components of the system, for example, we can construct a sentence classification system
based on a single vector generated from {h%,...,hZ}. In this case, we can simply use h¥
as the representation of the sequence. A more general approach is to add a pooling layer
to the encoder. This allows us to explore various pooling methods to generate the sequence
embedding from {hf,....hL }.

In text encoding, token sequences are represented by real-valued vectors, often referred to

6.5.3

84 Chapter 6. Transformers

as sentence representations or sentence embeddings, which can be seen as points in a multi-
dimensional space [Hill et al., 2016]. Another way to make use of text encoding, therefore, is
to obtain semantic or syntactic similarities of token sequences based on their relative positions
or proximity in this space. A straightforward method for this is to compute the Euclidean
distances between sequence embeddings. The shorter the distance between two sequences, the
more similar they are considered to be. There are many distance metrics we can choose, and it
is possible to combine them to obtain a better measure of sequence similarity. Such similarity
computations are applied in areas such as text entailment, information retrieval, translation
evaluation, among others [Cer et al., 2018; Reimers and Gurevych, 2019]. Additionally, they
are often used to assess the quality of text encoding models.

Text encoding is also a crucial component of sequence-to-sequence models. Given this, we
can develop a separate Transformer encoder for source-side sequence modeling in an encoder-
decoder system (see Figure 6.17). For example, we can pre-train a Transformer encoder on
large-scale source-side texts, and use it as the encoder in a downstream encoder-decoder model.
It is worth noting that while the encoder is designed based on the Transformer architecture,
the decoder is not confined to just Transformers. Such flexibility enables us to incorporate
pre-trained Transformer encoders into hybrid sequence-to-sequence architectures, such as
systems that combine a Transformer encoder with an LSTM decoder.

In supervised learning scenarios, training a Transformer encoder is straightforward. We
can treat it as a regular component of the target model and train this model on task-specific
labeled data. However, such a method requires the encoder to be optimized on each task, and
the resulting encoder might not always generalize well to other tasks, especially given that
labeled data is scarce in most cases. A more prevalent approach is to frame the training of
text encoders as an independent task in which supervision signals are derived solely from raw
text. This led researchers to develop self-supervised Transformer encoders, such as BERT,
which make use of large-scale unlabeled text, and these encoders were found to generalize
well across many downstream tasks. Further discussions of pre-trained Transformer encoders
can be found in Chapter 7.

Speech Translation

As illustrated in Section 6.1, the standard encoder-decoder Transformer model was proposed
to model sequence-to-sequence problems. Here we consider the problem of translating speech
in one language to text in another language — a problem that is conventionally addressed
using both automatic speech recognition (ASR) and machine translation techniques. Instead
of cascading an automatic speech recognition system and a machine translation system, we
can use Transformer models to build an end-to-end speech-to-text (S2T) translation system to
directly translate the input speech to the output text.

To simplify the discussion, we assume that the input of an S2T translation system is a
sequence of source-side acoustic feature vectors, denoted by a;...a,,, and the output of the
system is a sequence of target-side tokens, denoted by y...,,.>” Mapping ai...a,, to ¥1...Yn
is a sequence-to-sequence problem. Thus it is straightforward to model the problem using an

2"In order to obtain the input sequence to the system, we need to discretize continuous speech into signals

6.5 Applications 85

Similarity = 0.7

T T

’ Classifier (e.g., Softmax) ‘ ’ Similarity Computation (e.g., FFN) ‘
T T T
’ Pooling ‘ ’ Pooling ‘ ’ Pooling ‘
r 7 D N M 3 N N
Encoder Encoder Encoder
R N N R I A R + ++ ++ 1+ 7
0 OO O O O 1 1 I I 0 I 1 OO O O
T T 7 T T 1T 7 T T T 7
(CLS)Never give up * (CLS)Never give up - (CLS)Never say die !
(a) Classification (b) Similarity Computation
b S N €2
T T T T
Encoder — Decoder
2 Y M M T T T T
1 OO O O 1 O OO0 0O
T L ToT 1T 71
(CLS)Never give up * (808) kA HFE

(c) Sequence-to-Sequence Modeling

Figure 6.17: Integrating Transformer encoders as components of different systems. A common
approach is to feed the output of the encoder (with pooling) into a classifier to obtain a sequence
classification system. Another way to utilize Transformer encoders is to compute the similarity
between two sequences. We use the same encoder to represent the two sequences, and then
construct a neural network on top of the two representations for producing a similarity score
between them. As usual, Transformer encoders can also be used in encoder-decoder systems
to model sequence-to-sequence problems.

encoder-decoder Transformer model, and the training and inference of this model are standard,
like in neural machine translation.

In S2T translation, however, we have to deal with sequence mappings between modalities
and between languages simultaneously. This poses new challenges compared with conventional
machine translation problems and influences the design of S2T translation models. There have
been several improvements to Transformer models for adapting them better to S2T translation
tasks. Some of the improvements concern the design of Transformer blocks [Di Gangi et al.,
2019]. For example, in Gulati et al. [2020]’s system, a CNN sub-layer and relative positional
embeddings are integrated into each Transformer block, enabling the model to efficiently

represented by feature vectors. This process is typically nontrivial, requiring either a feature extractor based on a
variety of signal processing operations or a neural network that learns feature mappings in an end-to-end manner.
But we will not dive into the details of these methods and simply treat the input feature extractor as an upstream
system.

86 Chapter 6. Transformers

capture both local and global features.

Another line of research on S2T translation focuses on improving the encoder-decoder
architecture. This involves modifications to either encoders or decoders, or both. To illustrate,
Figure 6.18 shows the architectures of three S2T translation models. All of them are based on
Transformers, but have different encoder architectures. As shown in the figure, the standard
encoder-decoder architecture has one Transformer encoder for reading the source-side input
aj...a,, and one Transformer decoder for producing the target-side output y;...y,. By contrast,
the decoupled encoder model separates the encoder into two stacked encoders — one for
acoustic modeling (call it the speech encoder), and one for textual modeling (call it the text
encoder) [Liu et al., 2020c; Xu et al., 2021a]. This design reflects a modeling hierarchy in
which representations in different levels of the network are concerned with different aspects of
the problem, for example, the speech encoder models low-level features in mapping acoustic
embeddings into larger language units, and the text encoder models the semantic or syntactic
features in representing the entire input sequence. An advantage of separating out the text
encoder is that the encoding process follows our prior knowledge that we need to first transcribe
the speech input and then translate the transcript into the target language. Therefore, we can
train the speech encoder in some way we train an ASR system. This enables us to pre-train
the speech encoder and the text encoder on unlabeled data, and incorporate the pre-trained
encoders into S2T translation systems.

An alternative encoding architecture is the two-stream architecture, as shown in Figure
6.18 (c). Like the decoupled encoder architecture, this architecture has a speech encoder and a
text encoder, but the two encoders work in parallel rather than in sequence [Ye et al., 2021].
The speech encoder takes acoustic features as input and the text encoder takes tokens (or their
embeddings) as input. A third encoder, called shared encoder, integrates the outputs from
both the speech and text encoders, merging the representations from the two modalities. This
two-stream architecture is flexible because it provides multiple ways to train S2T translation
models. A common approach is to train each branch individually. For example, if we mask the
speech encoder, then the model will transform into a machine translation model which can be
trained using bilingual texts. Conversely, if we mask the text encoder, then we can train the
model as a standard S2T translation model. For inference, the text encoder can be dropped,
and the speech input is modeled using the speech encoder and the shared encoder.

In deep learning, training is often related to architecture design. Here, we have data in
two modalities and two languages, and so we can develop multiple supervision signals for
multi-task learning of S2T translation models. A widely used method is to introduce ASR-
related loss into the training of speech encoders. For example, in the decoupled encoder model,
a classifier can be constructed based on the output from the speech encoder. By minimizing
the connectionist temporal classification (CTC) loss for this classifier, the speech encoder
can be optimized in a manner similar to ASR. In general, training S2T translation models is
challenging because speech-to-text aligned data is scarce. Among typical responses to this
challenge are data augmentation, pre-training, knowledge distillation with machine translation,
and so on. However, an in-depth discussion of these methods goes beyond the scope of this
discussion on Transformers. The interested reader can refer to a recent survey on speech

6.5.4

6.5 Applications 87

Text (Target)
T
Encoder s Decod
(Speech) > ecoder
T
Speech (Source)
(a) Single Encoder + Single Decoder
Text (Target)
I T
Encoder Encoder - ¥ Decod
(Speech) (Text) i’ ceoder
I
Speech (Source) Transcript (Source)
(b) Decoupled Encoder + Single Decoder
Text (Target)
[T
Encoder Cod Encoder \—? Shared o Decod
(Speech) (Text) | BEncoder s
Speech (Source) Transcript (Source)

(c) Two-stream Encoder + Single Decoder

Figure 6.18: Architectures of speech-to-text translation models based on Transformers. In
addition to the standard encoder-decoder architecture, we can explicitly model the acoustic and
textual (semantic) information using two separate encoders, called the speech encoder and the
text encoder. In the decoupled encoder architecture, the two encoders are stacked, that is, text
encoding is a subsequent process after speech encoding. In the two-stream encoder architecture,
the two encoders work in parallel, and their outputs are merged using an additional encoder,
called the shared encoder. The dotted line indicates the potential for interaction between the
two encoders. For example, we could define a loss function to minimize the difference between
their outputs, thereby guiding the model towards more aligned representations.

translation for more information [Xu et al., 2023a].

Vision Models

While Transformers were first used in NLP, their application to other domains has been
a prominent research topic. In computer vision, for instance, there is a notable trend of
shifting from CNNs to Transformers as the backbone models. In this subsection, we consider
Vision Transformer (ViT) - an interesting application of Transformers to image classification

88 Chapter 6. Transformers

Is it a building? Classifier

T

Transformer Encoder

~
C = Extra Learnable
[CLS] embedding

Flattened Image Patches

Image

Figure 6.19: Illustration of Vision Transformer for image classification[Dosovitskiy et al.,
2021]. There are three steps. In the first step, the input image is segmented into patches, which
are then flattened and mapped into embeddings. In the second step, a Transformer encoder
is employed to process the sequence of embeddings, representing the image as a real-valued
vector (e.g., the output of the encoder at the first position). In the last step, a classifier is built
on top of this image representation.

[Dosovitskiy et al., 2021]. Vision Transformer is a milestone model which opens the door
to purely Transformer-based vision models. Here we consider the basic structure of Vision
transformer to make this section concentrated and coherent, although there has been an
extensive literature on Vision transformer and its variants. More detailed discussions of vision
transformer can be found in recent surveys [Han et al., 2022; Liu et al., 2023b].

The core idea behind Vision Transformer is to transform an image into a sequence of visual
tokens, and input this sequence into a Transformer encoder to generate a representation of
the image. The Transformer encoder is standard, and so we will not discuss it here, given the
introduction to Transformers we have presented so far in this chapter. Mapping a 2D image
into a sequence of tokens needs some additional work. Suppose we have an image represented
as an H x W x C feature map, where H is the height of the image, W is the width of the
image, and C' is the number of channels. The first step is to segment this image into a number
of patches. Suppose all patches are squares of side length P. Then the resulting patches can

be represented by feature maps of shape P x P x C. By ordering these patches in some way,
Y
Given this patch sequence, the subsequent steps are straightforward. For the patch at each

we obtain a sequence of

patches, with each patch being treated as a “token”.

position, we obtain a d-dimensional embedding by a linear transformation of the input feature
map. The input of the Transformer encoder is a sequence of d-dimensional vectors, each of
which is the sum of the corresponding patch and positional embeddings. Figure 6.19 illustrates
the patching and embedding steps in Vision Transformer.

Once we have a sequence of vectors for representing the image, we can employ the
Transformer encoder to encode the sequence. The encoding process is exactly the same as that

6.5.5

6.5 Applications 89

in text encoding as discussed in Section 6.5.2. For classification problems, we need only a
single representation of the input. It is convenient to take the output of the encoder at position 0
(denoted by hOL) and feed it into a classifier. Given that the first token [CLS] serves as a special
token that would be attended to by all other tokens, hOL provides an unbiased representation of
the entire sequence.

Typically, a standard way to train Vision Transformer is to minimize some loss on labeled
data, such as ImageNet. More recently, inspired by self-supervised learning in BERT-like
models, there have been successful attempts to train Transformer-based image encoders on
large-scale unlabeled data [Caron et al., 2021; Bao et al., 2021; He et al., 2022]. Note that one
of the most significant contributions of Vision Transformer is that it unifies the representation
models for different modalities. This suggests that if an object, whether an image or text, is
represented as a sequence of embeddings, it can be easily modeled using the Transformer
architecture.

Multimodal Models

The above discussion of Vision Transformer offers the possibility of unifying the representa-
tions from multiple modalities using the same Transformer architecture. In fact, many recent
multimodal systems draw inspiration largely from Transformers [Xu et al., 2023c]. Such
systems convert objects from different modalities into vector sequences and feed these vectors
into a single Transformer model. The output is a fused representation of all inputs, which can
then be used in downstream systems.

As a simple example, consider the task of encoding a pair consisting of text and its corre-
sponding image. First, we represent both the text and the image as sequences of embeddings
that have the same dimensionality. This is a common step in sequence modeling, which we
have confronted many times so far. We can do this by using either a simple embedding model
(e.g., a word or patch embedding model) or a well-trained sequence model (e.g., a vision
model). Then, these two sequences are concatenated into a long sequence involving both
textual and visual embeddings. The follow-on step is standard: a Transformer encoder takes
the concatenated sequence of embeddings as input and produces representations of the text and
image as output. Note that concatenating textual and visual sequences is one of the simplest
methods for vision-text modeling. There are several alternative ways to merge information
from different modalities, for example, we can feed visual representations into the attention
layers of a text encoder or decoder [Li et al., 2022d; Alayrac et al., 2022].

The above multimodal encoder can be used in both encoder-only and encoder-decoder
systems. For encoder-only systems, consider an example where, given an image and a
description of it, we predict the class of the image using a classifier built on top of the
encoder [Kim et al., 2021]. For encoder-decoder systems, we pair the encoder with a decoder,
as in sequence-to-sequence modeling [Cho et al., 2021]. For example, we might employ a
Transformer decoder to generate text based on the output of the encoder. A common application
of this architecture is visual question answering (VQA), where an image and a question about
the image are provided, and the system is tasked with generating an answer [Antol et al., 2015].
The architectures of these models are illustrated in Figure 6.20 (a-b).

90 Chapter 6. Transformers

Classifier | Is it an animal?

~

Transformer Encoder

Word and Positional Embeddings Patch and Positional Embeddings

(CLS) A cube with green color. i

(a) Multi-modal Encoder + Classifier

A FE SR
T Tt 1T 7

Transformer Encoder —_ Decoder

Word and Positional Embeddings Patch and Positional Embeddings

(CLS) A cube with green color. i

(b) Multi-modal Encoder + Text Decoder (Translation)

The color is green

t T T 11

Transformer Decoder
+rt+tr+rr+rr+rrrtrrrr Tt T T T T 71
COOCOOCOO0O0O0 OO OO0 O O O O O
rtTtrrrrrrTrTTTTTTT N
Word and Positional Embeddings Patch and Positional Embeddings (SOS) The color is green

T T

(CLS) What’s the color of the cube? i

(c) Multi-modal Decoder (Language Modeling)

Figure 6.20: Vision-text models. Blue boxes represent word+position embeddings, and red
boxes represent image patch+position embeddings.

6.6

6.6 Summary 91

More recently, NLP has seen new advances by using large language models to deal with
both textual and other forms of data, such as images, videos, and audio, leading to new
breakthroughs in multimodal processing [Liu et al., 2023a; Yin et al., 2023]. By representing
all inputs as a sequence of token embeddings, the problem will be simple: we predict the next
token given its context. This can be done by using decoder-only systems, as shown in Figure
6.20 (¢).

Summary

Transformer models have achieved widespread use over the past few years since the concept of
Transformer was proposed by Vaswani et al. [2017]. This has accelerated the development of
these models, leading to a great variety of new algorithms, systems and concepts. A thorough
discussion of Transformers requires a broad scope, and so it is impossible to cover every
problem and to provide a complete list of the corresponding references. While this chapter has
presented a detailed introduction to Transformers, there are still topics that we did not mention,
such as the theoretical aspects of these models. Figure 6.21 shows an overview of Transformer
models, where we attempt to give a big picture. Note that these models and related techniques
can be classified in many different ways, and we just show one of them. To summarize, we
would like to highlight the following points.

* Foundations of Transformers. Although the impact of Transformers has been revo-
lutionary, they are not completely "new" models. From a deep learning perspective,
Transformers are composed of common building blocks, including word and positional
embeddings [Bengio et al., 2003; Mikolov et al., 2013; Gehring et al., 2017], attention
mechanisms [Bahdanau et al., 2014; Luong et al., 2015], residual connections [He et al.,
2016], layer-normalization [Ba et al., 2016], and so on. Many of these components were
presented in earlier systems, for example, similar ideas with QKV attention can be found
in memory networks [Sukhbaatar et al., 2015] and hierarchical attention networks [Yang
et al., 2016]. Transformers offer a novel approach to integrating these components,
resulting in a unique architecture. For example, in Transformers, the combination of
multi-head attention and dot-product QKV attention, along with the incorporation of
layer-normalization and residual connections, gives rise to a distinctive neural network
block, specifically a self-attention sub-layer. This design has since become a de facto
standard in many follow-on sequence modeling systems.

» Attention Models. The success of Transformers on NLP tasks has largely been attributed
to the use of multi-head self-attention for sequence modeling. This has led to a surge
of interest in enhancing the attention mechanisms within Transformers. While it is
impossible to detail every attention model, there are several notable research directions.
One prominent direction involves modifying the forms of QKV attention and multi-
head attention for improved performance. The scope of this direction is vast, as there
are numerous aspects to consider when enhancing Transformers [Lin et al., 2022a].
For example, one may add new components to self-attention sub-layers to adapt them

92

Chapter 6. Transformers

Vision
ViT, Swin, MAE, BEIT, DETR,
iGPT, etc.

Am Supervised Transformers in NLP

Neural Machine Translation,

Summarization, Sentiment Analysis,
Question Answering, Named Entity
Natural Language Natural Language Recognition, Syntactic Analysis, etc.
Understanding: Generation:

BERT, ROBERTa, GPT Series, T5, BART,
ALBERT, SpanBERT, MASS, PaLM, LaMDA,
ERNIE, XLM, XLNet, Megatron-Turing NLG,
etc. BLOOM, LLaMA, etc.

Self-supervised Transformers in NLP

Speech
Wav2vec 2.0, Whisper,
HuBERT, Conformer, etc.

Multi-modal
CLIP, VILBERT, VisualBERT, VL-
BERT, UNITER, LXMERT, ViLT,
VLTS5, Data2vec, etc.

Bioinformatics Robotics

Recommendation Systems
Time Series Analysis

Inference

Search
Algorithms

Attention

Syntax-

aware
Attention

Foundations of Transformers

Transformer Sub-models Architectures Theoretical Analysis
* Word Encoding and Positional Encoding * Encoder Only * Linguistics

* Multi-head Self-attention * Decoder Only * Machine Learning
* Feed-forward Networks e Encoder-Decoder ¢ Formal Systems

¢ Layer Normalization and Residual Connections

Foundations of Transformers - Attention || Inference -
(et et) (PostiwalEnbiing) Scoaity_ (_toisios

Figure 6.21: An overview of Transformers.

6.6 Summary 93

to specific tasks, resulting in various Transformer variants. A second direction is to
incorporate prior knowledge into the design of attention models. This makes sense,
because much of the emphasis in traditional NLP has been on using linguistic insights to
guide system design, and we generally want NLP systems to be linguistically explainable.
For example, many Transformer-based systems take syntactic parses as input in various
forms and make use of syntax in sequence modeling. A third direction is to develop
efficient attention models [Tay et al., 2020b]. Self-attention has long been criticized for
its quadratic time complexity and dependency on all previous tokens for each new token.
In response, many researchers have focused on simplifying the structure of self-attention,
or on approximating it using sparse or recurrent models. This concern for efficiency also
motivates the development of alternatives to self-attention, such as attention models with
linear time complexity. In addition to exploring stronger and more efficient attention
models, it is natural to examine what knowledge is learned by such models. Interestingly,
researchers have found that the underlying structure of languages can be learned by
multi-head self-attention models, although these models are not trained to represent such
knowledge [Manning et al., 2020].

* Word and Positional Embeddings. Transformers represent each input word as a word
embedding, along with its positional embedding. Learning these word embeddings
is not a specific problem for Transformers. We can either resort to well-trained word
embeddings, such as the Word2Vec or GloVe embeddings, or treat them as learnable
parameters of Transformers. A related issue is tokenization of the input sequences.
In general, tokenization impacts the number of resulting tokens and the difficulty of
learning the corresponding embeddings. In many applications, therefore, one needs
to carefully choose a tokenization method. Furthermore, positional embedding plays
an important role in Transformers, as the attention mechanisms are order-insensitive
by design [Dufter et al., 2022]. Although positional embedding is a general problem,
much of the research is focused on improving Transformers, leading to modifications
to Transformer models [Shaw et al., 2018; Huang et al., 2018]. Additionally, studies
show that, when we deal with sequences that are much longer than those in training
data, extrapolation can be achieved by replacing sinusoidal positional embeddings with
rotary positional embeddings or simply scaling attention weights with a positional scalar
[Raffel et al., 2020; Su et al., 2021; Press et al., 2021].

* Training and Model Scaling. In the era of deep learning, powerful systems are
typically obtained by using large neural networks. A simple approach to increasing
the model capacity of Transformers is to stack more layers and/or enlarge the size
of each representation. We can see many cases where deep and wide Transformer
models consistently outperform small models. However, challenges arise when we
attempt to train extremely large Transformer models, especially when gradient descent is
applied over vast amounts of data, demanding substantial computational resources. An
engineering solution is to distribute the training across a cluster of computers [Lepikhin
et al., 2021; Chowdhery et al., 2022]. While distributed training is a very general

94

Chapter 6. Transformers

method and is not restricted to Transformers, it indeed influences the design of model
architectures, for example, sparse expert models can ease the training with distributed
parameters, serving as the foundation for many expansive Transformer-based systems.
Scaling up the training of Transformers allows us to study the scaling law of large neural
networks: how model performance relates to model size, training data size, and training
cost [Hestness et al., 2017; Kaplan et al., 2020]. This is sometimes accompanied by an
interesting behavior, known as emergence [Wei et al., 2022]. In recent NLP research,
the acquisition of emergent abilities has been considered one of the prerequisites for
developing strong language models.

Efficient Models. There are different goals for efficiency. For example, one may wish a
system to be memory efficient when the problem is memory bound, or one may wish it
to be speed efficient when latency is an important consideration. In general, we need to
seek a balance between these goals, resulting in different efficiency optimizations. In
the context of Transformers, many of these optimizations are achieved by modifying
the attention models, as mentioned above. For example, several variants of the self-
attention models are proposed to reduce the memory footprint when processing long
sequences [Tay et al., 2020b]. Similarly, other variants aim to reduce computation and
thus give lower latency. Furthermore, being a type of neural network, Transformers can
be optimized in ways independent of model architectures. Typical methods include but
are not limited to conditional computation, knowledge distillation, structured pruning,
and sequence compression. Efficiency optimizations can also be considered from the
perspective of computer architecture [Kim et al., 2023]. For example, when applying
Transformers to sequence-to-sequence problems, the encoding and decoding processes
are generally compute-intensive and IO-intensive, respectively. Therefore, we can
employ different optimization methods for different components of Transformers.

Inference. The inference problem is commonly discussed in sequence generation. In
NLP, we often need to find the “best” hypothesis in a space involving sequences of tens
or even hundreds of tokens over a vocabulary. Considering this an instance of the search
problem in artificial intelligence, many algorithms can be applied, such as breadth-first
search, depth-first search and A* search. In many practical applications of NLP, the
efficiency of the search systems is an important consideration. As a result, optimized
search algorithms are required. Most of these algorithms have been explored in machine
translation and ASR, and are directly applicable to neural text generation models like
Transformer. There are also optimizations of conventional decoding methods tailored
to Transformers [Leviathan et al., 2023]. Moreover, the above-mentioned efficient
approaches, such as the efficient attention models, are also in widespread use, with many
successful examples in deploying neural machine translation systems and large language
models [Heafield et al., 2021; Dao et al., 2023].

Applications. Applications of Transformers cover a wide variety of NLP problems.
During the development of Transformers, they were at first used to build supervised
models that perform particular tasks. Later, a greater success was achieved by using

6.6 Summary 95

them as backbone networks for large scale self-supervised learning of foundation models
[Bommasani et al., 2021]. This markedly changed the paradigm in NLP. We need only
pre-train a model to obtain general knowledge of languages on huge amounts of text.
Then, we adapt this model to downstream tasks using methods with little effort, such
as fine-tuning or prompting. Over the past few years, we have also seen an explosion
of applications for Transformers in fields other than NLP, such as computer vision,
speech processing, and bioinformatics. The idea behind these applications is that we
can represent any input data as a sequence of tokens and directly employ Transformers
to model this sequence. This approach extends Transformers to general representation
models across different modalities, making it easier to use Transformers for handling
multi-modal data.

* Large Language Models as Foundation Models. Transformers form the basis of recent
large language models, such as the GPT series, which show surprising breakthroughs
in NLP, and even in artificial general intelligence (AGI) [Bubeck et al., 2023; Yang
et al., 2023a]. Much of the research in large language models is more or less related
to Transformers. For example, as discussed in Section 6.5.1, the problem of training
these language models is the same as that of training Transformer decoders. And the
modifications to Transformer decoders can be directly applied to large language models.
On the other hand, the rapid development of large language models has also driven
further improvements in various techniques for Transformers, such as efficient and
low-cost adaptation of large Transformers to different tasks.

* Theoretical Analysis. Although Transformers have shown strong empirical results in
various fields, their theoretical aspects have received relatively less attention compared
to the extensive research on model improvement and engineering. This is not a specific
problem for Transformers, but a common problem for the NLP and machine learning
communities. In response, researchers have made attempts to analyze Transformers
more deeply. One way is to view Transformers as deep neural networks and interpret
them via mathematical tools. For example, the residual networks in Transformers are
mathematically equivalent to the Euler solvers for ODEs. This equivalence suggests
that we can leverage insights from numerical ODE methods to inform model design.
Another promising avenue of research aims to develop a theoretical understanding
of the self-attention mechanism, which distinguishes Transformers from other deep
learning models. For example, there have been studies on interpreting self-attention
and Transformers from machine learning perspectives, such as data compression [Yu
et al., 2023], optimization [Li et al., 2022c], and function approximation [Yun et al.,
2019]. Moreover, Transformers can also be related to formal systems, including Turing
machines [Pérez et al., 2018], counter machines [Bhattamishra et al., 2020], regular
and context-free languages [Hahn, 2020], Boolean circuits [Hao et al., 2022; Merrill
et al., 2022], programming languages [Weiss et al., 2021], first-order logic [Chiang et al.,
2023], and so on. These provide tools to study the expressivity of Transformers. It is,
however, worth noting that, while we can understand Transformers in several different

96

Chapter 6. Transformers

ways, there are no general theories to explain the nature of these models. Perhaps this
is a challenge for the field of machine learning, and many researchers are working on
this issue. But it is indeed an important issue, as the development of the theories behind
complex neural networks like Transformers can help develop systems with explainable
and predictable behaviors.

Bibliography

[Adi et al., 2016] Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg.
Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. In Proceedings of
International Conference on Learning Representations, 2016.

[Ainslie et al., 2020] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher,
Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and
structured inputs in transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 268-284, 2020.

[Alayrac et al., 2022] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob
Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj
Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a
visual language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716-23736, 2022.

[Antol et al., 2015] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE
international conference on computer vision, pages 2425-2433, 2015.

[Astrom and Wittenmark, 2013] Karl J Astrom and Bjorn Wittenmark. Computer-controlled systems:
theory and design. Courier Corporation, 2013.

[Baet al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[Bachlechner et al., 2021] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary
Cottrell, and Julian McAuley. Rezero is all you need: Fast convergence at large depth. In Proceedings
of Uncertainty in Artificial Intelligence, pages 1352-1361. PMLR, 2021.

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[Bai et al., 2021] Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and Yunhai
Tong. Syntax-bert: Improving pre-trained transformers with syntax trees. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pages 3011-3020, 2021.

[Bao et al., 2021] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image
transformers. In Proceedings of International Conference on Learning Representations, 2021.

[Barham et al., 2022] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven
Hand, Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan Saeta, Parker

98 BIBLIOGRAPHY

Schuh, Ryan Sepassi, Laurent El Shafey, Chandramohan A. Thekkath, and Yonghui Wu. Pathways:
Asynchronous distributed dataflow for ml. In Proceedings of Machine Learning and Systems,
volume 4, pages 430-449, 2022.

[Belinkov, 2022] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances.
Computational Linguistics, 48(1):207-219, 2022.

[Bello, 2020] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. In
Proceedings of International Conference on Learning Representations, 2020.

[Beltagy et al., 2020] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-
document transformer. arXiv:2004.05150, 2020.

[Bengio et al., 2015] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Condi-
tional computation in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137-1155, 2003.

[Bengio et al., 2013] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

[Bhattamishra et al., 2020] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and
limitations of transformers to recognize formal languages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 7096-7116, 2020.

[Bommasani et al., 2021] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, Erik Brynjolfsson, S. Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen A. Creel, Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin
Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, O. Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,
Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert Reich,
Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramer, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A. Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On
the opportunities and risks of foundation models. ArXiv, 2021.

[Bondarenko et al., 2021] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding
and overcoming the challenges of efficient transformer quantization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 7947-7969, 2021.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

BIBLIOGRAPHY 99

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[Bubeck et al., 2023] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke,
Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori,
Hamid Palangi, Marco Tilio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[Burchi and Vielzeuf, 2021] Maxime Burchi and Valentin Vielzeuf. Efficient conformer: Progressive
downsampling and grouped attention for automatic speech recognition. In Proceedings of 2021 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), pages 8—15. IEEE, 2021.

[Caron et al., 2021] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 9650-9660, 2021.

[Cer et al., 2018] Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[Chen et al., 2018] Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Tiejun Zhao. Syntax-
directed attention for neural machine translation. In Proceedings of the AAAI conference on artificial
intelligence, 2018a.

[Chen et al., 2018] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob
Uszkoreit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both
worlds: Combining recent advances in neural machine translation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 76-86,
2018b.

[Chen et al., 2018] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31, 2018c.

[Chen et al., 2015] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning
via knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

[Chiang et al., 2023] David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity
of transformer encoders. arXiv preprint arXiv:2301.10743, 2023.

[Child et al., 2019] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[Cho et al., 2021] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks
via text generation. In International Conference on Machine Learning, pages 1931-1942. PMLR,
2021.

[Choe and Charniak, 2016] Do Kook Choe and Eugene Charniak. Parsing as language modeling. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
2331-2336, 2016.

[Choromanski et al., 2020] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan,

100 BIBLIOGRAPHY

Xingyou Song, Andreea Gane, Tamds Sarlds, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention
with performers. In Proceedings of International Conference on Learning Representations, 2020.

[Chowdhery et al., 2022] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[Clark et al., 2019] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning.
What does bert look at? an analysis of bert’s attention. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276-286, 2019.

[Conneau et al., 2018] Alexis Conneau, German Kruszewski, Guillaume Lample, Loic Barrault, and
Marco Baroni. What you can cram into a single vector: Probing sentence embeddings for linguistic
properties. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2126-2136, 2018.

[Currey and Heafield, 2018] Anna Currey and Kenneth Heafield. Multi-source syntactic neural machine
translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2961-2966, 2018.

[Dai et al., 2019] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
2978-2988, 2019.

[Dao et al., 2022] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344—16359, 2022.

[Dao et al., 2023] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-
context inference. https://pytorch.org/blog/flash-decoding/, 2023. Retrieved
2023-10-23.

[Dehghani et al., 2018] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

[Del Corro et al., 2023] Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed
Awadallah, and Subhabrata Mukherjee. Skipdecode: Autoregressive skip decoding with batching
and caching for efficient llm inference. arXiv preprint arXiv:2307.02628, 2023.

[Di Gangi et al., 2019] Mattia Antonino Di Gangi, Matteo Negri, Roldano Cattoni, Roberto Dessi, and
Marco Turchi. Enhancing transformer for end-to-end speech-to-text translation. In Proceedings of
Machine Translation Summit XVII: Research Track, pages 21-31, 2019.

https://pytorch.org/blog/flash-decoding/

BIBLIOGRAPHY 101

[Ding et al., 2021] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang
Lin, Xu Zou, Zhou Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation
via transformers. Advances in Neural Information Processing Systems, 34:19822—-19835, 2021.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In Proceedings of ICLR 2021, 2021.

[Dufter et al., 2022] Philipp Dufter, Martin Schmitt, and Hinrich Schiitze. Position information in
transformers: An overview. Computational Linguistics, 48(3):733-763, 2022.

[Ee, 2017] Weinan Ee. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5:1-11, 02 2017.

[Elbayad et al., 2020] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive
transformer. In Proceedings of International Conference on Learning Representations, 2020.

[Elsken et al., 2019] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:
A survey. The Journal of Machine Learning Research, 20(1):1997-2017, 2019.

[Fan et al., 2021] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra
Malik, and Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6824—6835, 2021.

[Fan et al., 2020] Yang Fan, Shufang Xie, Yingce Xia, Lijun Wu, Tao Qin, Xiang-Yang Li, and Tie-Yan
Liu. Multi-branch attentive transformer. arXiv preprint arXiv:2006.10270, 2020.

[Fedus et al., 2022] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in
deep learning. arXiv preprint arXiv:2209.01667, 2022a.

[Fedus et al., 2022] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232-5270, 2022b.

[Fu et al., 2022] Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and
Christopher Re. Hungry hungry hippos: Towards language modeling with state space models. In
Proceedings of The Eleventh International Conference on Learning Representations, 2022.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Infernational conference on machine learning,
pages 1243-1252. PMLR, 2017.

[Gholami et al., 2022] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. In
Low-Power Computer Vision, pages 291-326. Chapman and Hall/CRC, 2022.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249-256. IMLR Workshop and Conference Proceedings,
2010.

[Gomez et al., 2017] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The
reversible residual network: Backpropagation without storing activations. Advances in neural
information processing systems, 30, 2017.

[Gou et al., 2021] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge

102 BIBLIOGRAPHY

distillation: A survey. International Journal of Computer Vision, 129:1789—-1819, 2021.

[Gray, 1998] Robert M. Gray. Quantization. IEEE transactions on information theory, 44(6):2325-2383,
1998.

[Gu et al., 2021] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. In Proceedings of International Conference on Learning Representations,
2021.

[Gu et al., 2022] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. Advances in Neural Information Processing Systems,
35:35971-35983, 2022a.

[Guetal., 2022] Albert Gu, Karan Goel, Khaled Saab, and Chris Ré. Structured state spaces: Combining
continuous-time, recurrent, and convolutional models. https://hazyresearch.stanford.
edu/blog/2022-01-14-s4-3, 2022b. Retrieved 2022-01-14.

[Gulati et al., 2020] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui
Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer:
Convolution-augmented transformer for speech recognition. Proceedings of Interspeech 2020, pages
5036-5040, 2020.

[Guo et al., 2020] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Xiangyang Xue, and Zheng Zhang. Multi-
scale self-attention for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7847-7854, 2020.

[Gupta et al., 2004] Madan Gupta, Liang Jin, and Noriyasu Homma. Static and dynamic neural
networks: from fundamentals to advanced theory. John Wiley & Sons, 2004.

[Guu et al., 2020] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
Retrieval augmented language model pre-training. In Proceedings of International conference on
machine learning, pages 3929-3938. PMLR, 2020.

[Haber and Ruthotto, 2017] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural
networks. Inverse problems, 34(1):014004, 2017.

[Hahn, 2020] Michael Hahn. Theoretical limitations of self-attention in neural sequence models.
Transactions of the Association for Computational Linguistics, 8:156-171, 2020.

[Han et al., 2022] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu,
Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and Dacheng Tao. A
survey on vision transformer. /EEE transactions on pattern analysis and machine intelligence, 45(1):
87-110, 2022.

[Han et al., 2020] Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-Cheng Chiu, James
Qin, Anmol Gulati, Ruoming Pang, and Yonghui Wu. Contextnet: Improving convolutional neural
networks for automatic speech recognition with global context. In Proceedings of Interspeech 2020,
pages 3610-3614, 2020.

[Han et al., 2021] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dy-
namic neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7436-7456, 2021.

[Hao et al., 2019] Jie Hao, Xing Wang, Shuming Shi, Jinfeng Zhang, and Zhaopeng Tu. Multi-
granularity self-attention for neural machine translation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on

https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3
https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3

BIBLIOGRAPHY 103

Natural Language Processing (EMNLP-1IJCNLP), pages 887—-897, 2019.

[Hao et al., 2022] Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard
attention transformers: Perspectives from circuit complexity. Transactions of the Association for
Computational Linguistics, 10:800-810, 2022.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In Proceedings of ECCV 2016, pages 630-645, 2016.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16000-16009, 2022.

[He et al., 2021] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-
enhanced bert with disentangled attention. In Proceedings of International Conference on Learning
Representations, 2021.

[Heafield et al., 2021] Kenneth Heafield, Qiangian Zhu, and Roman Grundkiewicz. Findings of the
WMT 2021 shared task on efficient translation. In Proceedings of the Sixth Conference on Machine
Translation, pages 639-651, 2021.

[Hestness et al., 2017] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[Hewitt and Liang, 2019] John Hewitt and Percy Liang. Designing and interpreting probes with control
tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2733-2743, 2019.

[Hill et al., 2016] Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations
of sentences from unlabelled data. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1367-13717, 2016.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[Hou et al., 2020] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert:
Dynamic bert with adaptive width and depth. Advances in Neural Information Processing Systems,
33:9782-9793, 2020.

[Howard et al., 2019] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler,
Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun
Zhu. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 1314-1324, 2019.

[Hu et al., 2021] Chi Hu, Chenglong Wang, Xiangnan Ma, Xia Meng, Yingiao Li, Tong Xiao, Jingbo
Zhu, and Changliang Li. Ranknas: Efficient neural architecture search by pairwise ranking. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages

2469-2480, 2021.

[Huang et al., 2018] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas
Eck. Music transformer: Generating music with long-term structure. In Proceedings of International

104 BIBLIOGRAPHY

Conference on Learning Representations, 2018.

[Huang et al., 2016] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep
networks with stochastic depth. In Proceedings of the 14th European Conference, pages 646—661.
Springer, 2016.

[Huang et al., 2017] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700—4708, 2017.

[Huang et al., 2020] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer
models with better relative position embeddings. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 3327-3335, 2020.

[Ivanov et al., 2021] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.
Data movement is all you need: A case study on optimizing transformers. In Proceedings of Machine
Learning and Systems, volume 3, pages 711-732, 2021.

[Jacob et al., 2018] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704-2713, 2018.

[Jaegle et al., 2021] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin
Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J.
Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and Jodo Carreira. Perceiver io:
A general architecture for structured inputs & outputs. In Proceedings of International Conference
on Learning Representations, 2021.

[Kaplan et al., 2020] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[Katharopoulos et al., 2020] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois
Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In International
conference on machine learning, pages 5156-5165. PMLR, 2020.

[Kidger, 2022] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435,
2022.

[Kim and Cho, 2021] Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with
length drop, use anytime with search. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 1 1th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6501-6511, 2021.

[Kim et al., 2019] Najoung Kim, Roma Patel, Adam Poliak, Alex Wang, Patrick Xia, R. Thomas
McCoy, Ian Tenney, Alexis Ross, Tal Linzen, Benjamin Van Durme, Samuel R. Bowman, and Ellie
Pavlick. Probing what different nlp tasks teach machines about function word comprehension. In
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (* SEM 2019),
pages 235-249, 2019.

[Kim et al., 2023] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan
Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia
Shao, and Amir Gholami. Full stack optimization of transformer inference: a survey. arXiv preprint
arXiv:2302.14017, 2023.

BIBLIOGRAPHY 105

[Kim et al., 2021] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer
without convolution or region supervision. In Proceedings of International Conference on Machine
Learning, pages 5583-5594. PMLR, 2021.

[Kim and Rush, 2016] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
1317-1327, 2016.

[Kim and Awadalla, 2020] Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient
transformer models for natural language understanding. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing, pages 149-158, 2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[Kitaev et al., 2020] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient
transformer. In Proceedings of International Conference on Learning Representations, 2020.

[Kudo, 2018] Taku Kudo. Subword regularization: Improving neural network translation models with
multiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 6675, 2018.

[Kwon et al., 2023] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for
large language model serving with pagedattention. arXiv preprint arXiv:2309.06180, 2023.

[Lagunas et al., 2021] Frangois Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block
pruning for faster transformers. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10619-10629, 2021.

[Lample et al., 2019] Guillaume Lample, Alexandre Sablayrolles, Marc’ Aurelio Ranzato, Ludovic
Denoyer, and Hervé Jégou. Large memory layers with product keys. Advances in Neural Information
Processing Systems, 32, 2019.

[Lepikhin et al., 2021] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. In Proceedings of International Conference
on Learning Representations, 2021.

[Leviathan et al., 2023] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding. In Proceedings of International Conference on Machine
Learning, pages 19274—-19286. PMLR, 2023.

[Lewis et al., 2020] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktdschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in
Neural Information Processing Systems, 33:9459-9474, 2020.

[Li et al., 2020] Bei Li, Hui Liu, Ziyang Wang, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and
Changliang Li. Does multi-encoder help? a case study on context-aware neural machine translation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
3512-3518, 2020a.

[Li et al., 2020] Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong Xiao, Huizhen Wang, and
Jingbo Zhu. Shallow-to-deep training for neural machine translation. In Proceedings of the 2020

106 BIBLIOGRAPHY

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 995-1005,
2020b.

[Li et al., 2021] Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao, Chunliang Zhang, and Jingbo
Zhu. Learning light-weight translation models from deep transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 13217-13225, 2021.

[Li et al., 2022] Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin Zeng, Tong Xiao, Jingbo
Zhu, Xuebo Liu, and Min Zhang. Ode transformer: An ordinary differential equation-inspired
model for sequence generation. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8335-8351, 2022a.

[Li et al., 2022] Bei Li, Tong Zheng, Yi Jing, Chengbo Jiao, Tong Xiao, and Jingbo Zhu. Learning
multiscale transformer models for sequence generation. In International Conference on Machine
Learning, pages 13225-13241. PMLR, 2022b.

[Li et al., 2022] Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding
of shallow vision transformers: Learning, generalization, and sample complexity. In The Eleventh
International Conference on Learning Representations, 2022c.

[Li et al., 2017] Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and Guodong Zhou.
Modeling source syntax for neural machine translation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 688—697, 2017.

[Li et al., 2022] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888-12900. PMLR, 2022d.

[Li et al., 2022] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra
Malik, and Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classifica-
tion and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4804-4814, 2022e.

[Liao et al., 2021] Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. A global past-
future early exit method for accelerating inference of pre-trained language models. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2013-2023, 2021.

[Lin et al., 2022] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers.
Al Open, 2022a.

[Lin et al., 2022] Ye Lin, Shuhan Zhou, Yanyang Li, Anxiang Ma, Tong Xiao, and Jingbo Zhu. Multi-
path transformer is better: A case study on neural machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 5646-5656, 2022b.

[Liu et al., 2020] Fenglin Liu, Xuancheng Ren, Zhiyuan Zhang, Xu Sun, and Yuexian Zou. Rethinking
skip connection with layer normalization. In Proceedings of the 28th international conference on
computational linguistics, pages 3586-3598, 2020a.

[Liu et al., 2023] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning. arXiv preprint arXiv:2304.08485, 2023a.

[Liu et al., 2020] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Under-
standing the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5747-5763, 2020b.

BIBLIOGRAPHY 107

[Liu et al., 2018] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating wikipedia by summarizing long sequences. In Proceedings
of International Conference on Learning Representations, 2018.

[Liu et al., 2023] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang,
Zhongchao Shi, Jianping Fan, and Zhiqiang He. A survey of visual transformers. IEEE Transactions
on Neural Networks and Learning Systems, 2023b.

[Liu et al., 2020] Yuchen Liu, Junnan Zhu, Jiajun Zhang, and Chengqing Zong. Bridging the modality
gap for speech-to-text translation. arXiv preprint arXiv:2010.14920, 2020c.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412—1421, 2015.

[Manning et al., 2020] Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and
Omer Levy. Emergent linguistic structure in artificial neural networks trained by self-supervision.
Proceedings of the National Academy of Sciences, 117(48):30046-30054, 2020.

[Martins et al., 2022] Pedro Henrique Martins, Zita Marinho, and André FT Martins. oo-former:
Infinite memory transformer-former: Infinite memory transformer. In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
5468-5485, 2022.

[Masoudnia and Ebrahimpour, 2014] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a
literature survey. The Artificial Intelligence Review, 42(2):275, 2014.

[McCarley et al., 2019] JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a
bert-based question answering model. arXiv preprint arXiv:1910.06360, 2019.

[Merrill et al., 2022] William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers
are constant-depth threshold circuits. Transactions of the Association for Computational Linguistics,
10:843-856, 2022.

[Michel et al., 2019] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better
than one? Advances in neural information processing systems, 32, 2019.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In Proceedings of

the 26th International Conference on Neural Information Processing Systems - Volume 2, pages
3111-3119, 2013.

[Nagel et al., 2021] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

[Oppenheim and Schafer, 1975] Alan V Oppenheim and Ronald W Schafer. Digital signal process-
ing(book). Prentice-Hall, 1975.

[Orvieto et al., 2023] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar
Gulcehre, Razvan Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences.
arXiv preprint arXiv:2303.06349, 2023.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F.

108 BIBLIOGRAPHY

Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730-27744, 2022.

[Park et al., 2019] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge
distillation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 3967-3976, 2019.

[Parmar et al., 2018] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In International conference on machine learning,
pages 4055-4064. PMLR, 2018.

[Peng et al., 2019] Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao Wu, Yu Liu, Shunfeng
Zhou, and Zhaoning Zhang. Correlation congruence for knowledge distillation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5007-5016, 2019.

[Peng et al., 2023] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella
Biderman, Huangi Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella,
Kranthi Gv, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej
Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu,
and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era. arXiv preprint arXiv:2305.13048,
2023.

[Peng et al., 2021] H Peng, N Pappas, D Yogatama, R Schwartz, N Smith, and L Kong. Random feature
attention. In Proceedings of International Conference on Learning Representations (ICLR 2021),
2021.

[Pérez et al., 2018] Jorge Pérez, Javier Marinkovié, and Pablo Barcel6. On the turing completeness
of modern neural network architectures. In Proceedings of International Conference on Learning
Representations, 2018.

[Petroni et al., 2019] Fabio Petroni, Tim Rocktédschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463-2473, 2019.

[Pham et al., 2019] Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Miiller, Sebastian
Stiiker, and Alexander Waibel. Very deep self-attention networks for end-to-end speech recognition.
arXiv preprint arXiv:1904.13377, 2019.

[Pires et al., 2023] Telmo Pessoa Pires, Anténio V Lopes, Yannick Assogba, and Hendra Setiawan.
One wide feedforward is all you need. arXiv preprint arXiv:2309.01826, 2023.

[Pope et al., 2023] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
In Proceedings of Machine Learning and Systems, 2023.

[Press et al., 2021] Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with
linear biases enables input length extrapolation. In Proceedings of International Conference on
Learning Representations, 2021.

[Provilkov et al., 2020] Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. Bpe-dropout: Simple
and effective subword regularization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 1882—-1892, 2020.

BIBLIOGRAPHY 109

[Qiu et al., 2020] Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang.
Blockwise self-attention for long document understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 2555-2565, 2020.

[Rabiner and Gold, 1975] Lawrence R Rabiner and Bernard Gold. Theory and application of digital
signal processing. Prentice-Hall, 1975.

[Rae et al., 2019] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timo-
thy P Lillicrap. Compressive transformers for long-range sequence modelling. In Proceedings of
International Conference on Learning Representations, 2019.

[Raffel et al., 2020] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

[Reimers and Gurevych, 2019] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 3982-3992, 2019.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[Roy et al., 2021] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient
content-based sparse attention with routing transformers. Transactions of the Association for
Computational Linguistics, 9:53-68, 2021.

[Santacroce et al., 2023] Michael Santacroce, Zixin Wen, Yelong Shen, and Yuanzhi Li. What matters
in the structured pruning of generative language models? arXiv preprint arXiv:2302.03773, 2023.

[Schlag et al., 2021] Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are
secretly fast weight programmers. In Proceedings of International Conference on Machine Learning,
pages 9355-9366. PMLR, 2021.

[Schuster et al., 2022] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran,
Yi Tay, and Donald Metzler. Confident adaptive language modeling. Advances in Neural Information
Processing Systems, 35:17456-17472, 2022.

[Schwartz et al., 2020] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and
Noah A Smith. The right tool for the job: Matching model and instance complexities. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6640-6651,
2020.

[See, 2018] Abigail See. Deep learning, structure and innate priors: A discussion between yann lecun
and christopher manning, 02 2018. URL http://www.abigailsee.com/2018/02/21/
deep-learning-structure-and-innate-priors.html.

[Sennrich et al., 2016] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715-1725, 2016.

[Shaw et al., 2018] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short

http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html

110 BIBLIOGRAPHY

Papers), pages 464—468, 2018.

[Shazeer, 2019] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv
preprint arXiv:1911.02150, 2019.

[Shazeer et al., 2017] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. In Proceedings of International Conference on Learning Representations,
2017.

[Shen et al., 2020] Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. A simple
but tough-to-beat data augmentation approach for natural language understanding and generation.
arXiv preprint arXiv:2009.13818, 2020.

[Shi et al., 2016] Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural mt learn source
syntax? In Proceedings of the 2016 conference on empirical methods in natural language processing,
pages 1526-1534, 2016.

[Skorski et al., 2021] Maciej Skorski, Alessandro Temperoni, and Martin Theobald. Revisiting weight
initialization of deep neural networks. In Asian Conference on Machine Learning, pages 1192-1207.
PMLR, 2021.

[So et al., 2019] David So, Quoc Le, and Chen Liang. The evolved transformer. In Proceedings of
International conference on machine learning, pages 5877-5886. PMLR, 2019.

[Sperber et al., 2018] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stiiker, and Alex
Waibel. Self-attentional acoustic models. In Proceedings of Interspeech 2018, pages 3723-3727,
2018.

[Srivastava et al., 2015] Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

[Stock et al., 2021] Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribonval,
Herve Jegou, and Armand Joulin. Training with quantization noise for extreme model compression.
In Proceedings of International Conference on Learning Representations, 2021.

[Strubell et al., 2018] Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCal-
lum. Linguistically-informed self-attention for semantic role labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 5027-5038, 2018.

[Su et al., 2021] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

[Sukhbaatar et al., 2015] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-
end memory networks. Advances in neural information processing systems, 28, 2015.

[Sukhbaatar et al., 2019] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin.
Adaptive attention span in transformers. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 331-335, 2019.

[Sun et al., 2023] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong
Wang, and Furu Wei. Retentive network: A successor to transformer for large language models.
arXiv preprint arXiv:2307.08621, 2023.

[Szegedy et al., 2014] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of
2nd International Conference on Learning Representations (ICLR 2014), 2014.

BIBLIOGRAPHY 111

[Tan and Le, 2019] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International conference on machine learning, pages 6105-6114. PMLR,
2019.

[Tay et al., 2020] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn
attention. In Proceedings of International Conference on Machine Learning, pages 9438-9447.
PMLR, 2020a.

[Tay et al., 2020] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers:
A survey. CoRR, abs/2009.06732, 2020b.

[Tenney et al., 2019] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical
nlp pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4593-4601, 2019a.

[Tenney et al., 2019] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas
McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. What
do you learn from context? probing for sentence structure in contextualized word representations. In
Proceedings of International Conference on Learning Representations, 2019b.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almabhairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,
Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023b.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
Advances in Neural Information Processing Systems, volume 30, 2017.

[Vinyals et al., 2015] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. Grammar as a foreign language. Advances in neural information processing systems, 28,
2015.

[Voita et al., 2018] Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. Context-aware neural
machine translation learns anaphora resolution. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1264-1274, 2018.

[Voita et al., 2019] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Ana-
lyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages

112 BIBLIOGRAPHY

5797-5808, 2019.

[Wallace et al., 2019] Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do nlp
models know numbers? probing numeracy in embeddings. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP), pages 5307-5315, 2019.

[Wang et al., 2020] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. Hat: Hardware-aware transformers for efficient natural language processing. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
76757688, 2020a.

[Wang et al., 2022] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and
Furu Wei. Deepnet: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022a.

[Wang et al., 2022] Hongyu Wang, Shuming Ma, Shaohan Huang, Li Dong, Wenhui Wang, Zhiliang
Peng, Yu Wu, Payal Bajaj, Saksham Singhal, Alon Benhaim, Barun Patra, Zhun Liu, Vishrav
Chaudhary, Xia Song, and Furu Wei. Foundation transformers. arXiv preprint arXiv:2210.06423,
2022b.

[Wang et al., 2022] Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Julian McAuley. Skipbert:
Efficient inference with shallow layer skipping. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 7287-7301, 2022c.

[Wang and Yoon, 2021] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks. IEEE transactions on pattern analysis
and machine intelligence, 44(6):3048-3068, 2021.

[Wang et al., 2023] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid
Karlinsky, Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow
pretrained models for efficient transformer training. In Proceedings of The Eleventh International
Conference on Learning Representations, 2023.

[Wang et al., 2018] Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yingiao Li, and Jingbo Zhu. Multi-
layer representation fusion for neural machine translation. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 3015-3026, 2018a.

[Wang et al., 2019] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. Learning deep transformer models for machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1810-1822, 2019.

[Wang et al., 2020] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020b.

[Wang et al., 2018] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 409-424, 2018b.

[Wang et al., 2020] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large
language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6151-6162, 2020c.

[Wei et al., 2022] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language

BIBLIOGRAPHY 113

models. arXiv preprint arXiv:2206.07682, 2022.

[Weiss et al., 2021] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In
Proceedings of International Conference on Machine Learning, pages 11080-11090. PMLR, 2021.

[Wu et al., 2018] Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less
attention with lightweight and dynamic convolutions. In Proceedings of International Conference on
Learning Representations, 2018a.

[Wu et al., 2019] Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less
attention with lightweight and dynamic convolutions. In Proceedings of International Conference on
Learning Representations, 2019.

[Wu et al., 2021] Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy.
Memorizing transformers. In Proceedings of International Conference on Learning Representations,
2021.

[Wu et al., 2020] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with
long-short range attention. In Proceedings of International Conference on Learning Representations
(ICLR), 2020.

[Wu et al., 2018] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis,
Kristen Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8817-8826,
2018b.

[Xiao et al., 2019] Tong Xiao, Yingiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention
weights for fast transformer. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI-19), pages 5292-5298, 2019.

[Xie et al., 2017] Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492—-1500, 2017.

[Xin et al., 2020] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic
early exiting for accelerating bert inference. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 22462251, 2020.

[Xiong et al., 2020] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer
architecture. In International Conference on Machine Learning, pages 10524—-10533, 2020.

[Xu and Mcauley, 2023] Canwen Xu and Julian Mcauley. A survey on dynamic neural networks for
natural language processing. In Findings of the Association for Computational Linguistics: EACL
2023, pages 2325-2336, 2023.

[Xu et al., 2021] Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, Shen Huang, Qi Ju, Tong Xiao, and
Jingbo Zhu. Stacked acoustic-and-textual encoding: Integrating the pre-trained models into speech
translation encoders. In Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 2619-2630, 2021a.

[Xu et al., 2023] Chen Xu, Rong Ye, Qiangian Dong, Chengqi Zhao, Tom Ko, Mingxuan Wang, Tong
Xiao, and Jingbo Zhu. Recent advances in direct speech-to-text translation. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23): Survey Track,

114 BIBLIOGRAPHY

pages 6796—6804, 2023a.

[Xu et al., 2023] Chen Xu, Yuhao Zhang, Chengbo Jiao, Xiaoqgian Liu, Chi Hu, Xin Zeng, Tong Xiao,
Anxiang Ma, Huizhen Wang, and Jingbo Zhu. Bridging the granularity gap for acoustic modeling. In
Findings of the Association for Computational Linguistics: ACL 2023, pages 10816-10833, 2023b.

[Xu et al., 2020] Hongfei Xu, Qiuhui Liu, Josef van Genabith, Deyi Xiong, and Jingyi Zhang. Lipschitz
constrained parameter initialization for deep transformers. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 397-402, July 2020.

[Xu et al., 2023] Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023c.

[Xu et al., 2021] Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun Shou, Ming Gong, Wanjun
Zhong, Xiaojun Quan, Daxin Jiang, and Nan Duan. Syntax-enhanced pre-trained model. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 5412-5422, 2021b.

[Yang et al., 2018] Baosong Yang, Zhaopeng Tu, Derek F Wong, Fandong Meng, Lidia S Chao, and
Tong Zhang. Modeling localness for self-attention networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4449-4458, 2018.

[Yang et al., 2023] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng
Liu, and Lijuan Wang. The dawn of Imms: Preliminary explorations with gpt-4v (ision). arXiv
preprint arXiv:2309.17421, 2023a.

[Yang et al., 2023] Zi Yang, Samridhi Choudhary, Siegfried Kunzmann, and Zheng Zhang. Quantization-
aware and tensor-compressed training of transformers for natural language understanding. arXiv
preprint arXiv:2306.01076, 2023b.

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the 2016 conference
of the North American chapter of the association for computational linguistics: human language
technologies, pages 1480-1489, 2016.

[Ye et al., 2021] Rong Ye, Mingxuan Wang, and Lei Li. End-to-end speech translation via cross-modal
progressive training. arXiv preprint arXiv:2104.10380, 2021.

[Yin et al., 2023] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen.
A survey on multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

[Yu et al., 2023] Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong,
Benjamin D Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. arXiv preprint
arXiv:2306.01129, 2023.

[Yuksel et al., 2012] Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture
of experts. IEEFE transactions on neural networks and learning systems, 23(8):1177-1193, 2012.

[Yun et al., 2019] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and
Sanjiv Kumar. Are transformers universal approximators of sequence-to-sequence functions? In
Proceedings of International Conference on Learning Representations, 2019.

[Zaheer et al., 2020] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie,
C. Alberti, S. Ontafion, Philip Pham, Anirudh Ravula, Qifan Wang, L. Yang, and A. Ahmed. Big
bird: Transformers for longer sequences. Advances in neural information processing systems, 33:

BIBLIOGRAPHY 115

17283-17297, 2020.

[Zhang et al., 2018] Biao Zhang, Deyi Xiong, and Jinsong Su. Accelerating neural transformer via
an average attention network. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1789-1798, 2018.

[Zhang et al., 2019] Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with
depth-scaled initialization and merged attention. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 898-909, 2019.

[Zhang et al., 2020] Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng Duan, Hai Zhao, and Rui Wang.
Sg-net: Syntax-guided machine reading comprehension. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9636-9643, 2020.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115,
2021.

[Zhou et al., 2020] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.
Bert loses patience: Fast and robust inference with early exit. Advances in Neural Information
Processing Systems, 33:18330-18341, 2020.

[Zhou, 2012] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, 2012.

[Zoph and Le, 2016] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning.
In Proceedings of International Conference on Learning Representations, 2016.

	6 Transformers
	6.1 The Basic Model
	6.1.1 The Transformer Architecture
	6.1.2 Positional Encoding
	6.1.3 Multi-head Self-attention
	6.1.4 Layer Normalization
	6.1.5 Feed-forward Neural Networks
	6.1.6 Attention Models on the Decoder Side
	6.1.7 Training and Inference

	6.2 Syntax-aware Models
	6.2.1 Syntax-aware Input and Output
	6.2.2 Syntax-aware Attention Models
	6.2.3 Multi-branch Models
	6.2.4 Multi-scale Models
	6.2.5 Transformers as Syntax Learners

	6.3 Improved Architectures
	6.3.1 Locally Attentive Models
	6.3.2 Deep Models
	6.3.3 Numerical Method-Inspired Models
	6.3.4 Wide Models

	6.4 Efficient Models
	6.4.1 Sparse Attention
	6.4.2 Recurrent and Memory Models
	6.4.3 Low-dimensional Models
	6.4.4 Parameter and Activation Sharing
	6.4.5 Alternatives to Self-Attention
	6.4.6 Conditional Computation
	6.4.7 Model Transfer and Pruning
	6.4.8 Sequence Compression
	6.4.9 High Performance Computing Methods

	6.5 Applications
	6.5.1 Language Modeling
	6.5.2 Text Encoding
	6.5.3 Speech Translation
	6.5.4 Vision Models
	6.5.5 Multimodal Models

	6.6 Summary

