Tong Xiao
Jingbo Zhu

Natural Language Processing

Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB
NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY
&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS 1S” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing

permissions and limitations under the License.

June 12, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0

Preface

Natural language processing (NLP) is one of the core subfields of artificial intelligence (AI).
For a long time, research in NLP primarily focused on solving specific problems in language
understanding and generation, such as parsing and machine translation. This task-driven
research approach dominated the development of NLP for several decades. However, with
the rise of deep learning, the research paradigm of NLP has undergone a fundamental trans-
formation. The application of deep neural networks has enabled us to tackle increasingly
complex tasks. More importantly, researchers have discovered that by conducting large-scale
pretraining on a base model with massive datasets, and then fine-tuning it with a small amount
of task-specific data and knowledge, it is possible to construct general-purpose models capable
of handling multiple tasks simultaneously. This new paradigm is greatly changing the research
landscape of NLP, and even the broader field of Al

This book focuses on modern NLP methods centered around neural networks and founda-
tion models. It aims to provide a practical guide to understanding, building, and applying these
powerful models. Unlike traditional NLP textbooks that organize chapters based on specific
tasks, this book is structured from the perspective of constructing neural NLP models and is

divided into three main parts:

* Foundations of Machine Learning and Neural Networks (Chapters 1-2): This part
introduces the core concepts and methods of machine learning and neural networks,
laying a foundation for the subsequent chapters. It is relatively self-contained and can

be studied independently or used as background material when needed.

* Basic Neural Models for Natural Language Processing (Chapters 3-6): This part
explains the neural networks used in NLP tasks, including word representation models,
sequence models, and sequence-to-sequence models. In addition, Transformers are
introduced in a dedicated chapter. These models are not limited to individual NLP tasks;

rather, they serve as general-purpose tools across many applications.

* Large Language Models (Chapters 7-11): This part focuses on large language models
(LLMs), covering topics such as pretraining, generative models, prompt engineering,

alignment, and inference.

This book is intended for senior undergraduates, graduate students, researchers in related
fields, and anyone interested in NLP. We strive for clear and accessible writing, aiming to
introduce core concepts and fundamental methods rather than providing an in-depth exploration
of all cutting-edge techniques. Therefore, this book can serve both as an introductory text for
newcomers and as a reference manual for key concepts and methods in NLP.

The content of this book has gradually taken shape through our years of teaching and
research experience. Initially, we only planned to write the first two parts. However, the rapid

4

rise and growing importance of LLMs led us to include this topic as a key part of the book. At
the same time, we are delighted to witness the rapid development of NLP, and the writing of
this book is also our response to this exciting trend.

Some chapters of this book have been previously published online, such as Introduction to
Transformers: An NLP Perspective (Chapter 6) and Foundations of Large Language Models
(Chapters 7-11), and we are grateful for the valuable feedback from many readers, which has
greatly contributed to the refinement of the book. Furthermore, during the writing process,
we drew significant inspiration from classic works, including Machine Learning by Mitchell
[1997], Foundations of Statistical Natural Language Processing by Manning and Schiitze
[1999], Pattern Recognition and Machine Learning by Bishop [2006], and Speech and Lan-
guage Processing by Jurafsky and Martin [2008]. Many insights from these works profoundly
influenced the writing approach of this book.

Lastly, we would like to express our heartfelt thanks to all those who provided suggestions
and revisions to the content of this book. They are: Weigiao Shan, Yongyu Mu, Chenglong
Wang, Kaiyan Chang, Yuchun Fan, Hang Zhou, Chuanhao Lv, Xinyu Liu, Tao Zhou, Huiwen
Bao, Tong Zheng, Junhao Ruan, Yingfeng Luo, Yuzhang Wu, and Yifu Huo.

Tong Xiao and Jingbo Zhu
June, 2025

This book is dedicated to our families.

Contents

“ Preliminaries

1.1

1.1.1
1.1.2

1.2

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6

1.4

1.4.1
1.4.2
1.4.3
1.4.4

1.5

1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6

Foundations of Machine Learningcovuutn 17
Math BasiCscciiiiiiii i it e et nna e e nnnnnsns 18
Linear Algebra e 18
Probability and Statistics 22
Designing a Text Classifier..............cciiiiiiiiiiiiainn, 26
Problem Statement 27
Documents as Feature Vectors 28
Linear Classifiers e e 29
Generative vs Discriminative 32
OOV Words and Smoothing e 35
General Problemsc. ittt it iia et aanans 37
Supervised and Unsupervised Models 37
Inductive Bias 38
NoNn-linearity e 40
Training and Loss Functions 42
Overfitting and Underfitting 47
Prediction e 49
Model Selection and Evaluation.................cciiiiiiiannnns 50
Strategies for Model Selection 51
Training, Validationand TestData 56
Performance Measure 57
Significance Tests 58
NLP Tasksas ML Tasks.........ccoiiiiiiiii it i i iinaannns 59
Classification 59
Sequence Labeling 60
Language Modeling/Word Prediction 61
Sequence Generation 62
Tree Generation 63

Relevance Modelingo 64

1.5.7
1.5.8
1.5.9

1.6

2.1

211
21.2
2.1.3

2.2

2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

2.4

2.4.1
2.4.2
2.4.3
2.4.4

2.5

2.5.1
25.2
2.5.3
254
2.5.5

2.6

2.6.1
2.6.2
2.6.3

2.7

Linguistic Alignment 65

EXtraction e 67
Others . . 67
SUMMANY . . oottt it it e it et s e ssasnnasannsnnnsannsnnnsns 68
Foundations of Neural Networks, 71
Multi-layer Neural Networks ns 71
Single-layer Perceptrons 71
Stacking Multiple Layers 73
Computation Graphs 75
Example: Neural Language Modelingccoiiiinnnnn. 78
Basic Model Architecturesc.ccoiiiiiiiiiiii i 83
Recurrent Units e 83
Convolutional Units 85
Gate Unitso e 87
Normalization (Standardization) Units 88
Residual Units e 89
Training Neural Networkst 90
Gradient Descent 90
Batching 94
Parameter Initialization 96
Learning Rate Scheduling 97
Regularization Methodscciiiiiiiiii it 99
Norm-based Penalties 100
DropoUL . . o 101
Early Stoppingo oo 102
Smoothing Output Probabilities 103
Trainingwith Noise 105
Unsupervised Methods and Auto-encoders..................... 108
Auto-encoders with Explicit Regularizers 111
Denoising AUtO-eNCOdersot t 113
Variational Auto-encoders 115
T 1] 11T T 119

L Basic Models

3

3.1

3.1.1
3.1.2

Words and Word Vectorscoiiiiiiinneeirnnnneernns 123
Tokenizationcv ittt ittt it sttt et s m e 124
Tokenization via Rules and Heuristics 125

Tokenization as Language Modeling 126

3.1.3
3.1.4
3.2

3.2.1
3.2.2
3.2.3
3.3

3.3.1
3.3.2
3.3.3

3.4

3.5

3.5.1
3.5.2
3.5.3

3.6
3.6.1

3.6.2
3.6.3

3.7

4.1

4.2

421
422
423
424

4.3
4.3.1
4.3.2
4.3.3
4.4

4.41
4.4.2
4.4.3

4.5

4.51
452
453

Tokenization as Sequence Labeling 129

Learning Subwords 130
Vector RepresentationforWords.oiiiinnn.. 137
One-hot Representation e 138
Distributed Representation 138
Compositionality and Contextuality 140
Count-basedModelscoiiiiiiiii i e 142
Co-occurrence MatriCes 142
TE-IDF 146
Low-Dimensional Models 147
Inducing Word EmbeddingsfromNLMs 153
Word EmbeddingModelscciiiiiiiiiiiiiiaias 154
WOrd2Vec 155
GOV . 157
Remarks 161
Evaluating Word Embeddingsccccviiiiiiininnnnn, 163
Extrinsic Evaluation 163
Intrinsic Evaluation 164
Visualization e 167
S T1] 3] 1 1= T 168
Recurrent and Convolutional Sequence Models 171
Problem Statement i e 172
RecurrentModels.t et 173
An RNN-based Language Model 173
Training . . oo 175
Layer Stacking oo 178
Bi-directional Models 180
=T 11T 181
Memory as A System 182
Long Short-Term Memory 183
Gated Recurrent Units 185
Convolutional Modelsccoiiiiii it iaees 187
Convolutiono 187
CNNs for Sequence Modelingo 190
Handling Positional Information 193
Examples.ooiiii i i e e 198
Text Classification 198
End-to-End Speech Recognition 200

Sequence Labeling with LSTM and Graphical Models 203

454
4.6

5.1

5.2
5.2.1
5.2.2

5.3

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

5.4

5.4.1
5.4.2
54.3
5.4.4
5.4.5
5.4.6
5.4.7
54.8

5.5

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Hybrid Models for Language Modeling i 207

SUMMANY . . ittt it ittt ettt et s e aassaansanssnnssnnnsnnns 207
Sequence-to-Sequence Models 211
Sequence-to-Sequence Problemso, 212
The Encoder-Decoder Architecturecciiviinnnn. 213
Encodingand Decoding 213
Example: Neural Machine Translation 215
The Attention Mechanism.cc ittt iinnaanrnnn 218
ABasic Model 219
The QKV Attention 223
Multi-head Attention 226
Hierarchical Attention 229
Multi-layer Attention 232
Remarks 233
SearCht i i i et et e e 238
The Length Problem 238
Pruningand Beam Search 242
Online Search 250
Exact Search e 254
Differentiable Search 256
Hypothesis Diversity 258
Combining Multiple Models 260
More Search Objectives 262
T 1] 11T T 265
Transformers ... ittt e e 269
TheBasicModel.......... ... et iie e eennns 269
The Transformer Architecture 269
Positional Encoding 273
Multi-head Self-attention 274
Layer Normalization 276
Feed-forward Neural Networks 277
Attention Models onthe Decoder Side 278
Training and Inference 281
Syntax-aware Models.ciiiiiii it 283
Syntax-aware Inputand Qutput 284
Syntax-aware AttentionModels 285
Multi-branch Models 287
Multi-scale Models e 290

Transformers as Syntax Learners i iininnnnn.. 291

6.3

6.3.1
6.3.2
6.3.3
6.3.4

6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9

6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

6.6

Improved Architectures. ...t e 295

Locally Attentive Models 295
Deep Models 299
Numerical Method-Inspired Models, 305
Wide Models 308
EfficientModels i ittt r s 312
Sparse Attention 312
Recurrentand Memory Models 317
Low-dimensional Models 322
Parameter and Activation Sharing 327
Alternatives to Self-Attention 328
Conditional Computation 336
Model Transferand Pruning i 341
Sequence COMPIreSSIONottt e e e 343
High Performance Computing Methods 344
Applicationst e 347
Language Modeling« 348
Text ENCodingo oo 349
Speech Translation 350
Vision Models 353
Multimodal Models 355
SUMMaAIY . . sttt ittt et et et e es e nasnasansasnnasnnsansnnns 357

m Large Language Models

7

7.1

7.1.1
7.1.2

7.2

7.2.1
7.2.2
7.2.3
7.2.4

7.3

7.3.1
7.3.2
7.3.3
7.3.4

Pre-trainingcoiiiiiiii i i i 365
Pre-trainingNLPModels...............ccoiiiiiiiiii i 366
Unsupervised, Supervised and Self-supervised Pre-training 366
Adapting Pre-trained Models 368
Self-supervised Pre-training Tasksccoiviiiinn.n. 372
Decoder-only Pre-training 372
Encoder-only Pre-training 373
Encoder-Decoder Pre-trainingo 380
Comparison of Pre-training Tasks 386
Example: BERTottt r et e enas 388
The Standard Model e 388
More Training and Larger Models i 393
More Efficient Models 393

Multi-lingual Models 394

7.4
7.5

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.2

8.2.1
8.2.2
8.2.3
8.2.4

8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

8.4

9.1

9.11
9.1.2
9.1.3
9.1.4

9.2

9.2.1
9.2.2
9.2.3
9.24
9.2.5

9.3

9.3.1
9.3.2
9.3.3

9.4

ApplyingBERT Modelsccciiiiiiii ittt i e e nnnns 396

T4 1] 11T T 401
Generative Modelso 403
A Brief IntroductiontoLLMscciiiiiiiiiiannnnn 404
Decoder-only Transformers 405
Training LLMS . .. 408
Fine-tuning LLMS 409
Aligning LLMs withthe World 415
Prompting LLMS 419
TrainingatScale...........ciiiiiiiiii i i it 425
Data Preparation 425
Model Modifications 427
Distributed Training oo 430
Scaling Laws 433
Long Sequence Modelingccviiiiiiiiiiiinnannnnnns 436
Optimization from HPC Perspectives 437
Efficient Architectures 438
Cache and Memory 441
Sharing across Headsand Layers i 450
Position Extrapolation and Interpolation 452
Remarks 463
T 1] 11T T 466
Prompting ... e i i 467
General PromptDesign.cciiiiiiiiiiiiiieinnennnnns 468
BasiCS . .. 468
In-context Learning 471
Prompt Engineering Strategies 473
More Examples 478
Advanced Prompting Methodsccoiiiiianat. 489
Chainof Thought e 489
Problem Decomposition 492
Self-refinement 499
Ensembling 505
RAGand Tool Use 509
LearningtoPrompt i 515
Prompt Optimization 515
Soft Prompts 519
Prompt Length Reduction 528

SUMMaAIY . . ettt ittt e s e e e ta s asnasansansnsnnsnnsnnss 530

10
10.1

10.2

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5

10.3

10.3.1
10.3.2
10.3.3

10.4

10.4.1
10.4.2
10.4.3
10.4.4
10.4.5

10.5

11

111

11.1.1
11.1.2
11.1.3
11.1.4

11.2

11.2.1
11.2.2
11.2.3
11.2.4

11.3

11.3.1
11.3.2
11.3.3
11.3.4

11.4

Alignmento e 533
An Overview of LLM Alignmentcciiiiiiiiinrnnnnnnn 534
Instruction Alignment ...t i 535
Supervised Fine-tuning 536
Fine-tuning Data Acquisition 541
Fine-tuningwithLessData 546
Instruction Generalization 547
Using Weak Models to Improve Strong Models 549
Human Preference Alignment: RLHF 553
Basics of Reinforcement Learning 553
Training Reward Models 560
Training LLMS . . . 563
Improved Human Preference Alignment........................ 568
Better Reward Modeling 568
Direct Preference Optimization 575
Automatic Preference Data Generation 578
Step-by-step Alignment 580
Inference-time Alignment 583
SUMMANY . .ttt ettt e it et st et n s e asasannsannsannnnnnss 584
Inference ... i e 587
Prefillingand Decoding.cviiiiiiiini it iia e innnnnns 588
Preliminaries 588
A Two-phase Framework 593
Decoding Algorithms 596
Evaluation Metrics for LLM Inference 607
Efficient Inference Techniques............. ..ot 608
More Caching 608
Batching 609
Parallelization 619
Remarks 619
Inference-time Scaling. ..ot 621
Context Scaling 622
Search Scaling 623
Output Ensembling e 623
Generating and Verifying Thinking Paths 624

SUMMANY . .ottt i it et e s s et ns e asnsnnnsannrannsnnnss 632

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Preliminaries

Foundations of Machine Learning.......... 17
Math Basics

Designing a Text Classifier

General Problems

Model Selection and Evaluation

NLP Tasks as ML Tasks

Summary

Foundations of Neural Networks 71
Multi-layer Neural Networks

Example: Neural Language Modeling

Basic Model Architectures

Training Neural Networks

Regularization Methods

Unsupervised Methods and Auto-encoders

Summary

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 1

Foundations of Machine Learning

The goal of machine learning is to develop methods that can automatically
detect patterns in data, and then to use the uncovered patterns to predict
future data or other outcomes of interest.

— Murphy [2012]

Machine learning can be broadly defined as computational methods using
experience to improve performance or to make accurate predictions.

— Mohri et al. [2018]

Data-driven NLP fits the above definitions!. It teaches computers to learn language experience
from corpora, and to understand and utilize language based on that experience. Connecting
machine learning (ML) with natural language processing is much more than a means that
makes computers mimic human language intelligence from data. It is leading a revolution in
both areas: natural language processing evolves by using a powerful tool of deriving meaning
from corpora, and machine learning evolves by addressing the NLP challenges and testing on
real-world data.

In this chapter, we present several basic concepts and models in machine learning. There
are no tough bits but some preliminaries for the subsequent chapters. Here we focus on how
to apply machine learning to NLP problems, in particular how to define an NLP problem
as a statistical learning problem. To do this, we start with classification — one of the most
widely-used examples in most introductory books. We then present several fundamental issues
of machine learning. They are followed by a discussion on NLP problems from the machine
learning perspective.

'We drop the term data-driven from now on and assume that all NLP models are data-driven in the remainder
of this document.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

1.1

1.1.1

18 Chapter 1. Foundations of Machine Learning

Math Basics

In the remainder of this chapter and the following chapters, we will talk about machine learning
problems using the tool of applied mathematics. Here are the math basics. If you find the
details trivial, you can skip to Section 1.2 directly.

Linear Algebra
1. Vectors and Matrices

Scalar may or may not be the simplest concept in linear algebra, but is surely the most common
concept that one learns in high school or in university. A scalar is a number. It is a quantity
that has a magnitude but has no direction. For example, height, weight, distance, temperature
are all examples of scalars. Here we use an italic number to denote a scalar, for example, a, b,
x, A, and so on.

Vector and matrix are defined on top of scalar. A vector is an array of scalars, or simply a
number list. A matrix is a rectangular array of scalars. In this book, we follow the convention
of using bold letters to denote vectors and matrices. For example, an n-dimensional vector can
be written as

a = |a; a2 .. an (1.1)

where {a1, as, ..., a, } are the elements (or entries) of the vector. Each indicates a dimension.
For convenience of notation, we write a; as a(7) sometimes. A vector is a real-valued vector
only if all the elements are real numbers (i.e., a; € R for each 7), denoted as a € R™. Likewise,
we can write an m X n matrix as

A = (1.2)

where m is the number of rows and n is the number of columns. A;; is the entry (7,j) of
the matrix. A real-valued matrix is denoted as A € R™*"™, Occasionally, we use A,,x, to
emphasize that the shape of the matrix is m X n.

There are a few special matrices. For example, a matrix whose elements are all zeros is a
zero matrix, denoted as 0. Another example is identity matrix, denoted as I. It is a square
matrix whose diagonal elements are all 1, and other elements are 0. Vectors can be treated as a
special sort of matrices, too. For example, the vector in Eq. (1.1) is a matrix with only one row.

1.1 Math Basics 19

2. Matrix Transpose

The transpose of a matrix A, x, is a matrix B,,x,, subject to A;; = Bj; for each pair of ¢ and
j. Often, A’s transpose is denoted as AT. For example, for a matrix

8 0 0
A:[297] (13

the transpose is
8 2
AT = |0 9 (1.4)
0 7

One can transpose a vector as well. For a vector
a = [197 3 (15)

the transpose is

(1.6)

W N © =

In general, a vector with only one row is called a row vector (as in Eq. (1.5)), and a vector
with only one column is called a column vector (as in Eq. (1.6)). In this book, all vectors are
row vectors by default.

3. Element-wise Operations on Matrices

Suppose A and B are two matrices of the same shape, say A, B € R™*", The matrix addition
of A and B is written as A + B. A + B is a matrix in R”*" such that each element is the
sum of the corresponding elements of A and B. Here is an example.

8 0 0 111
A+B =
* [2 9 7 +[1 0 4]
9 1 1
= 1.7
[3 9 11] 47

In a similar way, we can define element-wise minus (A — B), product (A ® B), division
(A © B) and other operations. A special case of element-wise product is that we multiply a
matrix A with another matrix whose elements are all the same (say k). It is equal to scaling A
with a scalar k, denoted as k x A or kA. This is also called scalar product. See below for an

20 Chapter 1. Foundations of Machine Learning

800]

example for k =2 and A = 9 9 7

kA:2[800]

2 97
16 0 0
= 1.
[4 18 14] (18

Let A, B and C be matrices in R™*", and k and [be scalars in R. Some properties of the
matrix operations are:

* Property of the zero matrix:

A = A+0
= 0+A (1.9)
¢ Commutativity:
A+B = B+A (1.10)
kKIA = [kA (1.11)
* Associativity:
(A+B)+C = A+(B+C) (1.12)
(KA = I(kA) (1.13)
* Distributivity:
E(A+B) = kEA+kB (1.14)
(k+1)A = EA+IA (1.15)
4. Dot Product
The dot product of two same-sized vectors a = [al as ... an} and b = [bl by ... bn}
is defined to be:
ab = [albl ashy ... anbn} (1.16)

In geometry, a real-valued vector a can be seen as a geometric object having both magnitude
(denoted as |a|) and direction. The dot product of a and b can also be defined as

a-b = |a]x|b|xcos(f) (1.17)

where 6 is the angle between a and b.

1.1 Math Basics 21

5. Matrix Product

Matrix product (or matrix-matrix product) operates on two matrices. Given a matrix
A € R"™*P and a matrix B € RP*", the matrix product of A and B produces a matrix
C € R™*™ whose elements are defined as:

p
Cij = ZAik:XBkj
k=1

= AilXB1j+Ai2XBQj+...+AipXBpj (1.18)

Matrix product requires that the number of columns in A is exactly the same as the number
of rows in B. In this book we use AB to denote the matrix product of A and B. Here are a
few properties of matrix product.

* Distributivity. For A € R"™*P and B, C € RP*"™, the left distributivity is defined as
AB+C) = AB+AC (1.19)
For A,B € R™*P and C € RP*", the right distributivity is defined as
(A+B)C = AC+BC (1.20)
* Associativity. For A € R™*P, B € RP*? and C € R?*", the associativity defines
(AB)C = A(BC) (1.21)
* Transpose. For A € R™*P and B € RP*™, we have
(AB)T = BTAT (1.22)

Matrix product is not commutative, i.e., we do not have AB = BA for all A and B even
if A and B are square matrices with the same shape. Based on matrix-matrix product, we can
define vector-matrix product and matrix-vector product accordingly. This is trivial because all
we need is to see a vector as a matrix in multiplication.

6. Norm

In a vector space, norm is a measure of vector “length”. Given a vector a = [al az ... an] €
R™, the norm on a is a function that maps from R™ to R. It is written as || - ||, or [, for short.
p 1s defined as

I

1/
lall, = (0 Jal?) ™ (1.23)

It is called p-norm or [, norm. The popular versions of p-norm are those when p = 1,2 and

1.1.2

22 Chapter 1. Foundations of Machine Learning

Q.
lalh = > lail (1.24)
=1
n
lalls = (| laif? (1.25)
=1
lallec = max{|ail,|as],...,|an|} (1.26)

2-norm and co-norm are also called Euclidean norm and maximum norm. p-norm can also
be used in measuring the distance of two points in an n-dimensional space. Let b be another
vector in R™. The p-norm distance between a and b is given by the equation:

n 1/p
la=bl, = (Zizl la; — bi!’”) (1.27)

Probability and Statistics
1. What is Probability

Probability is a matter of uncertainty. It is a quantity that describes how likely an event is to
happen. For example, if the event is certain to happen, we will say that the probability is 1; if
the event will never happen, we will say that the probability is 0.

Then, what is an event? In short, an event is an experimental outcome. It could be simply
the result of everything. For example, an event could be the action that you raised your
arms, the scene that you were seeing the sunset, the result that you figured out for a math
quiz, and so on. A set of related events is described by a random variable or variable for
short. For example, we can define the outcome of tossing a coin as a variable z. As there
are two outcomes (heads or tails), we have two choices for the value of x. We can define
that x = 1 when the coin lands heads, and = = 0 otherwise. Hence, x is a binary variable or
more precisely a 0-1 variable. A variable choosing a value means that an event happens. For
example, z = 1 means the event of the coin landing heads.

In mathematics, probability is a measure on the probability space comprising events (call
it a probability measure). As a measure, probability should satisfy certain properties, such
as countable additivity [Ash and Doléans-Dade, 1999]. This means that not all functions
defined on the interval [0, 1] could be a probability measure. Here we do not discuss the precise
definition of probability measure. We just simply treat it as a function that outputs a real
number in [0, 1].

Usually, a probability measure is denoted as a function Pr(-), called a probability function.
When the input of Pr(-) is defined on a discrete set of events, the output of the function is
the probability that an event happens. For example, Pr(z = 1) means the probability of =
equalling 1. Note that Pr(z) is a function that varies its output by choosing different values
of z. Suppose z; is a value that z can take. When we write Pr(z;), it means Pr(z = z1).
Because the probability over all events should be 1, any probability function should be subject

1.1 Math Basics 23

to:

> Pr(z) = 1 (1.28)

r,€X

where X is the set of all events. A probability function can be defined on two variables or
more. Here are a few widely-used cases.

* Joint Probability. It is the probability that two events x; and y; happen at the same
time, denoted as Pr(x1,y1). As a special case, the joint probability will be decomposed
into the product of the probabilities of z; and v, if 1 and y; are independent of each
other.

Pr(z1,y1) = Pr(z1) Pr(y1) (1.29)

* Conditional Probability. It is the probability that z; happens in the presence of y;
happening, denoted as Pr(z1|y1). Pr(x1]y;) can be defined as:

Pr(zalyr) = Soob¥l) (1.30)

Pr(y1)

* Marginal Probability. It is another way to define the probability of a single variable.
Given the joint probability on two variables, the marginal probability defines that

Pr(xzy) = ZPr(:ﬁl,yj) (1.31)

y; €Y

where Y is the event space of ;. Eq (1.31) says that Pr(z1) is unconditioned on Y.

Another note on joint probability. In some cases, one would like to use conditional
probabilities to represent a joint probability. To this end, one can rewrite the joint probability
by the product rule or the chain rule, like this

Pr(z1,y1) = Pr(z1]y1) Pr(y1) (1.32)

So far, we have defined several kinds of probability on discrete variables. For continuous
variables, we do not have a “probability” at a certain point. Instead, we have a density for that
point. More formally, given a continuous variable x, a probability density of x is written
as Pr(x). Suppose z € R. The probability of x lying in the interval [a,b] is defined via an
integral:

b
Pr(z € [a,b]) = J Pr(z)dx (1.33)

24 Chapter 1. Foundations of Machine Learning

Obviously, we have

+o0
J Pr(z)de = 1 (1.34)
—0o0

For other properties, such as joint probability and conditional probability, the forms for
continuous variables are almost the same as those for discrete variables. We just need to replace
the sums in the formulas with the integrals.

2. Distribution and Expectation

A probability distribution (or distribution for short) is the probabilities of different values
for a variable. It is defined by probability functions (for discrete variables) or probability
density functions (for continuous variables). For example, a uniform distribution on a discrete
variable z that chooses values from {z1,x2} can be described as Pr(x;) = 1/2 because
Pr(z1) = Pr(z2) and Pr(z1) + Pr(xz2) = 1; A uniform distribution on a continuous variable
in [—2,2] can be described as Pr(z) = 1/4 because Pr(x) is a constant for any = € [—2,2] and
f%Q Pr(x)dx = 1. Statisticians have developed many distributions for describing the world
we are living in, such as binomial distribution, Bernoulli distribution and Gaussian/normal
distribution. One can find details of these distributions in most textbooks on statistics [McClave
and Sincich, 2006; Freedman et al., 2007].

For describing properties of a variable, a popular means is to compute the expected value
or expectation of the variable. Let x be a discrete variable that takes values from {z1,...,z,},
and Pr(z) be a distribution on z. The expected value of x is defined to be

i=1

where the subscript « ~ Pr(x) indicates that = follows the distribution Pr(z). In many cases,
we can drop the subscript and rewrite it as E(x). E(z) is essentially the weighted average
value of x under the distribution Pr(z). It is a measure of central tendency, and is sometimes
called the mean of a variable (denoted as).

Then, we can define the variance of a variable as the squared variation of the variable
from the mean value, like this

Var(z) = E[(z—E(x))?] (1.36)

Informally, it describes how far the values are from the mean. Var(z) is usually written as o2,

where o is called standard deviation.
For a continuous variable z € R, the expected value is defined as:

“+oo
E(x) = J x-Pr(z)dx (1.37)

—0o0

where Pr(z) is a probability density function. For computing the variance of x, we just reuse

1.1 Math Basics 25

Eq. (1.36).

3. Entropy

Entropy is one of the most important tools of describing random variables and processes
[Shannon, 1948b]. It is a measure of expected surprise. The more deterministic the events
occur, the less surprise and less information there will be. For simplicity, we restrict the
discussion on discrete variables here®. Let z be a variable and Pr(z) be a distribution on z.
The entropy is written as:

H(z) = =) Pr(x)-log,Pr(z;) (1.38)
i=1

where b is the base of the logarithm function. The value of b is typically set to 2, 10 and e.

In addition to obtaining the entropy of a single distribution, we can determine the similarity
of two distributions from the entropy point of view. Suppose p(x) and g(x) are distributions
on z. The relative entropy of p with respect to ¢ is defined to be:

n
pix;
Dyplle) = > p(r:)-log, 20 (139)
— q(i)
We can treat p(x;) as a weight to the log likelihood ratio log, %. Hence, Dy(pl|q) is a

weighted sum of the likelihood ratios over all possible values. A smaller value Dy(p||q)
indicates that distributions p and ¢ are closer. For example, p and ¢ will be identical if
Dy (p||q) = 0. The relative entropy is also called the Kullback-Leibler (KL) divergence. Note
that the relative entropy is asymmetric, i.e., we cannot guarantee Dy (p||q) = Dy(ql|p)-

Another concept that is popular in machine learning is cross-entropy. It is a measure of
the information (in terms of the total number of bits) that we need to transit the events from a
source in one distribution with another distribution. More formally, we write the cross-entropy
of the distribution p with the distribution g as Hcyoss(p,q). It is defined to be:

n

Hcross(p>Q) = Zp(xi)'logQQ(xi) (1.40)
=1

Like relative entropy, cross-entropy is asymmetric too. Both relative entropy and cross-entropy
are widely used in designing the objective of learning NLP systems although they are different
quantities. The difference lies in that relative entropy calculates the average number of bits
when replacing p with ¢, while cross-entropy calculates the total number of bits in the same
process.

2For continuous variables, we have similar calculations.

1.2

26 Chapter 1. Foundations of Machine Learning

Designing a Text Classifier

Classification is one of the most common problems in machine learning. It aims at automat-
ically categorizing something into a set of classes. These classes are called labels, or tags,
or categories. In general, a program of classification is called a classifier or classification
system. There are a vast number of practical applications of classifiers. A simple example is
spam filtering in that one needs to label an email as “spam” or “not-spam”. More challeng-
ing examples include classifying computed tomography images of organs into “normal” or
“not-normal”, determining whether a piece of Chinese text is written by native speakers or not,
labeling a patent application with a set of IPC codes it belongs to, and so on.

Many machine learning theories and algorithms are modeled and tested on classification
tasks. Following this convention, we consider text classification as an example to get started.
Assume that we have a corpus like this.

Text Label
The game was wonderful. Not-food

I’ve tried my best to recreate it in my kitchen. It tastes heavenly. Food
For centuries seaweed was considered a food for normal people. Food

Have you finished your coding work today? Not-Food
I was wondering how you could miss the bus. Not-Food
I like fruit because it is good for health. Food

Natural language processing research is amazing. Not-Food

Each line of the corpus is a tuple of a piece of text (we simply call it a document) and a
label that indicates whether the text is about food or not. We call such tuples samples, or more
precisely labeled samples. Labeled samples are essentially question-answer pairs although
they do not strictly follow the general forms of questions and answers. For example, in the
samples presented above, one can take a document as a question and take its label as the
answer. In the next few chapters, we will show that such a form of describing machine learning
problems is general and fits most problems in NLP.

Next, let us assume that we have a classifier that learns from those samples the way of
labeling documents. The classifier is then used to label every new document as “Food” or
“Not-Food”. For example, for the text

Fruit is not my favorite but I can enjoy it.

the classifier would categorize it as “Food”.

However, text classification, though seems simple on the surface, is much more than
classifying or sorting unlabeled samples into classes. It presents a wide variety of issues,
especially when considering the ambiguities and richness of language. Modern classifiers are
not a system comprising a set of hand-crafted rules. They instead model the classification
problem in a probabilistic manner, making it possible to learn the ability of classification from
large-scale labeled data.

1.2.1

1.2 Designing a Text Classifier 27

Problem Statement

Let x be a document and c be a label. Here we assume a probabilistic classifier which would
estimate how likely we choose ¢ as the label of x, denoted as Pr(c|z). Pr(c|z) is in general a
classification model. It describes a distribution over the set of all possible labels, satisfying

> Pr(clz) = 1 (1.41)

ceC

where (' is the label set. For any document, we choose the most probable label as output via
the classification model, like this

¢ = argmaxPr(c|z) (1.42)
ceC
where ¢ is the “best” label predicted by the model. arg max is the abbreviation of the arguments
of the maxima. It returns the value of the argument that maximizes some function.

Eq. (1.42) is the fundamental equation of classification. It implies three problems

* The modeling problem. Pr(c|x) is a computational challenge because it is not obvious
how to obtain the value of Pr(c|x) for each pair of = and c¢. To make an adequate
model, one may need to represent x and c in some way that is easy to use, and may need
to develop some mathematical form connecting x and c together with the algorithms
necessary to compute the form.

* The learning problem. From a statistical learning point of view, the general form of
Pr(c|x) represents a range of models configured with different variables or parameters.
These models are essentially of the same form but would behave differently if we choose
different values of those parameters. Thus, we need to choose a “good” model among
them. This is typically addressed by optimizing the parameters on labeled data by some
criterion.

* The prediction problem. We are addressing a binary classification problem here.
Predicting document class is thus trivial as we just need to determine which class is more
probable than the other. However, one can hardly imagine how difficult the prediction
problem is in the real world, especially when predicting tree or graph-like structures and
other non-linear structures®. For many NLP problems, prediction needs effective and
efficient search algorithms.

These problems are general and cover many machine learning and natural language
processing tasks. Binary classification, though is one of the simplest cases, can fully complete
the goal of getting familiar with machine learning. On the other hand, classification has several
variants. Here are two examples.

* Multi-class classification. It is an updated version of binary classification. In multi-class

3Predicting trees or other structures is not recognized as a standard sub-problem of classification. It is typically
referred to as structure prediction. We will show in the later sections that both classification and structure
prediction can share a similar machine learning paradigm.

1.2.2

28 Chapter 1. Foundations of Machine Learning

classification, one needs to classify samples into one of three or more classes.

* Multi-label classification. This might be confusing because multi-class classification
and multi-label classification seem to be the same thing. By conventional use of the
terms, multi-label classification is referred to as assigning multiple labels to a sample.
By contrast, the problem presented in Eq. (1.42) is a single-label classification problem.

Classification would be more interesting and challenging if we extend it to the case of
dealing with hierarchical data. For example, for biological and patent data, some classes can
be grouped into a super-class. This makes a hierarchy of the classes and requires a hierarchical
classification schema.

Documents as Feature Vectors

The first problem we confront in designing text classification models is how to represent a
document. Treating x as a string is simply not a good solution. One may want a representation
by which a human being can understand the text. For example, we can parse each sentence in
a document into a syntax tree and use trees as a text representation. This, however, requires
efforts for developing additional NLP tools (such as syntactic parsers).

Representation, of course, is a fundamental issue in NLP. We skip here those diverse,
state-of-the-art models, but present a simple and effective model — the bag-of-words (BOW)
model. The bag-of-words model is a feature-based model of representing documents. In
machine learning, a feature is a property of a sample. One can define a feature not only as
some concrete attribute, such as a name and a gender, but also as a quantity that is countable
for machine learning systems, such as a real number.

In the bag-of-words model, a feature corresponds to the occurrence times of a word. Let V
be a vocabulary. A document can be represented as a |V'|-dimensional feature vector. Each
dimension describes a word count feature. It counts the occurrence of the i¢-th word of V' in the
document. More formally, let x be a feature vector. The ¢-th entry of x is defined as:

x; = count(V}) (1.43)

where count(-) is a counting function. Consider, for example, the following lines of text*.

As I went to Bonner
I met a pig
Without a wig,

Upon my word and honor.

“The text is from Mother Goose rhymes.

1.2 Designing a Text Classifier 29

We then have a vocabulary extracted from the corpus’, like this

V. = {*a”, “and”, “as”, “Bonner”, “honor”,
“T”, “met”, “word”, “my”, “pig”,
“to”, “upon”, “went”, “wig”’, “without”,
“’”, “‘”}
Each line of the text can be seen as a document and represented as a feature vector. See
below for the feature vectors generated by using the bag-of-words model.

g‘é o E

o] g = = = gawg

a§£§§H§§§'§8%§'§ e
AsIwenttoBonner([0O 1 1 01 00 00 1010 0O0O0]
Imetapigi][10 00011001 0000 0O00O0]
Withoutawig,[[10 00 0 00000 0001 1 10]
Upon my word and honor.|{[01 00 1 001 10 0100 O0O01]

The bag-of-words model defines a vector space®. In this space, the similarity of two vectors
is measured in some way like dot-product. It helps when one wants to establish the relationship
between documents — two documents with more overlapping words are more similar. This
intuitive picture has guided many people when building classification systems.

The beauty of the bag-of-words model comes from its simple form in that any word
is independent of other words. The independent assumption makes it possible to encode a
document with almost infinite word relations as a countable, feasibly sized vector. On the
other hand, representing a document as a feature vector of word counts is not the only option.
As an improvement, one might take more context into account, and/or design more powerful
features. This leads to an active line of research on text representation methods, ranging from
heuristics-based methods to representation learning methods. We will see a few of them in the

subsequent chapters.

1.2.3 Linear Classifiers
Linear classifier is one of the simplest classification models. Suppose we take a feature vector
X = [:cl ... ,| asinput, and take a weight vector w = [wl wn} and a scalar b as

parameters. A linear function has a form like this

s(x,w,b) = w-x+b

= wx1 +woexo+ ...+ WLy, +b (1.44)

where b is a bias term. The dot product x - w is a linear combination of [561 xn} where
each z; is weighted by w;. For a more condensed formulation, we can define a new input vector

>We removed the case of the word at the beginning of each line.
SA vector space should be closed under vector addition and scalar multiplication.

30 Chapter 1. Foundations of Machine Learning

x' = [xl R 1] and a new weight vector w' = [wl .. wp b|. We then rewrite Eq.
(1.44) as:
s(x',w') = s(x,w,b)
= w.x (1.45)

In the following, we drop the bias term b for simplicity and use s(x,w) to denote a linear
function. For classification, a linear function is used to describe class membership. Each class
is assigned a score by the function equipped with a unique weight vector. Consider again the
binary classification as an example. Let ¢, and ¢, be two classes. We can define two weight
vectors w, and wy, so that the function can discriminate between ¢, and cp.

For prediction, we can infer a class based on s(x,w). To achieve this, activation functions
(+) are in general used for mapping the value of s(x,w) to a class. For example, for binary
classification, we can define an activation function like this,

Y(z) = {C“ v=0 (1.46)

¢, otherwise

Then, we make a prediction by

P(s(x,wg) —s(x,wyp)) = (1.47)

Ca S(X,Wgq)—s(x,wp) >0
cp otherwise

As s(x,w,) — s(x,wp) = s(x,w, — W), the final prediction function is ¥ (s(x, ws — Wy)).

We call it a discriminant function. Note that s(x,w, — wy) is linear. So this is a linear

discriminant function.

A discriminant function assigns an input vector x directly to a class but it does not describe
how likely a class would appear given x. There are other activation functions for generating a
desirable output. For example, we may want a probability-like output (see Eq. (1.42)), and
thus define 1(-) as a normalized function’. Then, the classification probabilities are given by
the equation

[Pr(calx) Pr(abo)] = o [sowa) sxw)])

= [S(x;gﬁcz;wb) s(x,vjt(:)(-’lz?i,wz;) }

(1.48)

where 1)(-) is a vector function®. It normalizes the entries of the input vector by the sum

of these entries. The decision rule is simple: we predict ¢, if Pr(c,|x) > Pr(cp|x), and
s(x,Wa) s(x,wp)

s(x,waq)+s(x,wp) s(x,Wq)+s(x,wp)

prediction can also be made by comparing the numerators, i.e., we are doing the same thing

cp otherwise. Since and share the same denominator, the

as that in Eq. (1.47). In subsequent chapters, we will show that the trick of transforming

7 A normalized function is a function whose integral over its domain is equal to 1.
8A vector function reads a vector and returns a new vector.

1.2 Designing a Text Classifier 31

o Food x Not-food

Z2

Figure 1.1: Data points and separating hyperplanes in two dimensions. There are two classes
of data points (food and non-food). Both hyperplanes 1 and 2 separate the space into two
sub-spaces where the two classes of data points are isolated. In this sense, the problem here is
linearly separable. On the other hand, hyperplane 3 fails to separate the two classes, that is, the
data points in the same class are classified into two different classes.

comparing probabilities to comparing real-valued scores is frequently used for addressing NLP
problems.

For ease of understanding, one can see a linear classification model as a hyperplane (or
decision surface, or decision boundary) that separates data points into different groups.
Figure 1.1 shows example hyperplanes in a 2D space where each x is a data point. Hyperplanes
1 and 2 successfully separate the data points into the correct classes, while hyperplane 3 fails
to do so. In this sense, the task of classification is to find hyperplanes that make the correct
separation of data points.

«««< HEAD It is worthy of note that linearity is the basis of many classifiers although most
of them do not in the same form as Eqs. (1.44 - 1.45). A linear model can be nearly a perfect
solution if the problem is linearly separable’. Even for non-linearly separable problems, linear
models can be married to other models with a non-linear separation ability. A good example
is that one can achieve non-linear classification by marrying a linear model with a non-linear
activation function. ======= It is worthy of note that linearity is the basis of many classifiers
although most of them do not exist in the same form as Eqgs. (1.44 - 1.45). A linear model

9Linear separability checks if there is a way that we put a hyperplane to reside a group of data points from the
remaining data points. For example, the problem shown in Figure 1.1 is linearly separable.

1.24

32 Chapter 1. Foundations of Machine Learning

can be nearly a perfect solution if the problem is linearly separable'”

. Even for non-linearly
separable problems, linear models can be married to other models with a non-linear separation
ability. A good example is that one can achieve non-linear classification by marrying a linear

model with a non-linear activation function. »»»> origin/master

Generative vs Discriminative

There are two ways, though not restricted to linear models, to make use of linearity in
classification — generative models and discriminative models. While most statistical
classifiers are of the modeling variety, they choose the backbone design from either or both of
these two types of models.

1. Generative Models
A goal of classification is to learn Pr(c|x). Generative models do not explicitly model this
conditional probability. Instead, they model the joint probability Pr(x,c), and use the Bayes’
rule to compute Pr(c|x). This is given by the following equation.
Pr(x,¢)
Pr(c|x) = Prix)
Pr(c) Pr(x|c)

e (1.49)

where Pr(x,c) is rewritten as Pr(x|c) Pr(c). For an optimal class ¢, we choose a class ¢ by
maximizing Pr(c|x) (see Eq.(1.42)). Since the denominator x is a constant for any ¢, we just
need to maximize the numerator. Then, we rewrite Eq.(1.42) in the form

>
Il

argmax Pr(c|x)
ceC

Pr(c) Pr(x|c)
= argmax——————
ceC PI“(X)
= argmaxPr(c) Pr(x|c) (1.50)
ceC
where Pr(c) is the prior of ¢, and Pr(x|c) is the conditional probability of the input document
vector x given c. Computing Pr(c) is easy. For example, the maximum likelihood estimation
(MLE) defines Pr(c) as a relative frequency:

B count(c)
Pr(e) = > e count(c) (151

where count(c) counts the occurrences of ¢ in a corpus.

But computing Pr(x|c) is non-trivial as data sparseness prevents us from accurately
estimating the probability of a high-dimensional document vector. Recall that the bag-of-words
model defines x; as the word frequency of V; in the document. We assume here that the feature

10Linear separability checks if there is a way that we put a hyperplane to separate a group of data points from the
remaining data points. For example, the problem shown in Figure 1.1 is linearly separable.

1.2 Designing a Text Classifier 33

vector x = [161 xn} is generated by a multinomial (p1(c),p2(c),...,pn(c)), where p;(c)
is the probability of V; occurring given c. Based on MLE, we can estimate p;(c) by the relative
frequency estimation:

count(V;,)

i = 1.52
pilc) > 1<ir<p count(Vir, c) (1.52)

where count(V;, ¢) is the number of occurrences of V; in all documents labeled as c¢. Then,
Pr(x|c) is given by

Pr(x|c) = (Zz—lx’ sz (1.53)

R LR

Substituting Eq. (1.53) into Eq. (1.50), we have

¢ = argmax Pr(c)-Moﬁp‘(c)zi (1.54)
ceC $1'$2'xn' el ‘

Note that %

right-hand side of the equation in log scale:

is independent of any c. We drop it in argmax, and rewrite the

¢ = argmax log(Pr(c —i—Z::J:Z log(pi(c (1.55)
ceC

Obviously, this is a linear model. It defines the feature vector and weight vector as below

X = {1 1 ... mn} (1.56)
w = [log(Pr(c) log(pi(c) - log(pa(c)] (157)

Such a form is sometimes called a log-linear model, as the linearity comes from transforming
the original problem via a logistic function.

In general, Eq (1.55) is called the multinomial naive Bayes approach. There are, of course,
the naive Bayes variants for other types of feature vectors. For example, for binary value
feature vectors, one can assume a Bernoulli distribution on each entry of a vector and design
a Bernoulli naive Bayes classifier; for vectors with continuous features, one can assume a
Gaussian distribution over continuous data and design a Gaussian naive Bayes classifier.

2. Discriminative Models

The model defined by Pr(c|x) = P;EZ;;) Pr(%)rpi xl9) (see Eq. (1.49)) is called generative

because it assumes some way of generating data x given label c. The idea is to use Pr(x,c) as
a pivot to compute Pr(c|x). As an alternative possibility for modeling Pr(c|x), discriminative
models do not try to model the distribution of x but estimate Pr(c|x) directly. An example is
logistic regression. For binary text classification, a naive Bayes classifier predicts label ¢, for

34 Chapter 1. Foundations of Machine Learning

a given document x only if the following function is positive:

Ja(x) = log 1;?22{3 (1.58)
One can assume that this quantity follows a linear model:
logm = wW-X (1.59)
Since Pr(cp|x) = 1 — Pr(c,|x), we have
Pr(cq|x) ! (1.60)
1+ exp(—w-x)

This is a logistic function, or more precisely a Sigmoid function. With such a model, we
predict ¢, only if w - x is positive. Eq. (1.60) is also called the logistic regression classifier. It
is simply a discriminative analog of the naive Bayes classifier.

An advantage of discriminative models is that they offer flexibility in viewing classification
(or other machine learning problems) from different angles. While generative models try to
estimate the data distribution of x, discriminative models try to find a good boundary between
classes. Discriminative models, therefore, care more about which class is prioritized over
another given x, or in possibility language which class is more likely to appear, instead of
making assumptions on individual data points. This makes it possible to learn a classifier by
minimizing the number of some errors, not necessarily guaranteeing the maximum likelihood
on those data points. This approach is generally called error-driven learning.

There are many ways to define errors. Like generative models, one can learn a discrim-
inative model by fitting parameters w to maximize the likelihood on the training data. Let
{(xM, M), .., (x5)] be a set of labeled documents, where x(*) is a document and
) is the corresponding class. The best parameter vector w is given by the equation

K
W = argmax ZlogPr(C(k)|x(k)) (1.61)
Yo k=1

Taking Eq. (1.60), the process can be seen as maximizing the likelihood

K

W = argmax Zlogé(ca,c(k))Pr(ca]X)+10g5(cb,c(k))Pr(cb|x)
Yo k=1
K

= argmax Zlogé(ca,c(k))
Vo k=1

1
1+ exp(—w-x(*))

+

1
My (1
log 8(cy, ¢)(1 1+exp(—w-x(k))) (1.62)

where 4(+,-) is an indicator function that returns 1 if the two arguments are equal, and O

1.2.5

1.2 Designing a Text Classifier 35

otherwise.
Alternatively, we can train the model by minimizing 0-1 errors, that is, we count an error
when the output is not the correct label. This process can be formulated as

K
W = argmin Zé(é(k),c(k)) (1.63)
Vo k=1

where ¢(9) is the prediction made by the classifier. The 0-1 error can be further extended by
taking the posterior into account:

K
w = argmin » Pr(c®[x®).5(c®), k) (1.64)
w k=1

The training objective plays an important role in discriminative models. This topic, however,
is so broad and beyond the scope of this section. We will present some in Section 1.3.4.
As another bonus, discriminative models do not restrict features to forming a probabilistic
generative story. In a broader sense, x could be any feature vector that is designed by
researchers and engineers. One does not even need to guarantee the probabilistic meaning
for these features. For example, let g(x) be the output of another system, say some scores.
Following Eq. (1.60), a new binary classification model can be designed in a logistic regression
manner:

1

Pr(ca[x) 1+exp(—w-g(x))

(1.65)

For learning ¢g(x), one can either pre-train it on some additional data, or train it jointly with w
(i.e., the parameters of the upper-level model Pr(c,|x)).

OOV Words and Smoothing

The out-of-vocabulary (OOV) problem occurs when some of the words of a document are not
found in the vocabulary. OOV words are common in NLP because new words are always there
no matter how much text we have seen. Figure 1.2 gives two curves to illustrate this problem.
As shown in Figure 1.2 (a), new words continuously appear when more data is available. When
we fix the data that is used for testing the coverage of a vocabulary, OOV words remain even if
we have an extremely large vocabulary (Figure 1.2 (b)).

For practical systems, OOV words are common because the vocabulary is often restricted
to a “small” number of entries. A standard method is to keep the top-n most frequent words
and discard the rest. In this case, OOV words are treated as unknown words. For example,
a new symbol <unk> is introduced into the vocabulary so that all OOV words are denoted
as <unk>. A more aggressive idea is to build an open-vocabulary system that accepts every
possible word, but it would require more sophisticated algorithms and probably a task-specific
design of data structures. The <unk> trick is still the de facto standard for the development of
current NLP systems.

36 Chapter 1. Foundations of Machine Learning

(-10% (%)
100
3 ©80 | :
- 5 60 .
=)
e 240 | -
g %
§ o 20 1 Ee—a B all
| | | | ! 11 (-10%) ! ! ! ! ! | 10
200 400 600 800 1,0001,200 0 4 8 12 16 20
Data size Vocabulary size

Figure 1.2: Data size (in number of words), vocabulary size and percentage of OOV. The
statistics are collected on the English data provided in the WMT21 Zh-En translation task. The
more data we use, the larger vocabulary we have. The increase in vocabulary size continues
even if we build the vocabulary on data of more than 100 million words. However, the slope
of the curve tends to be smaller as more data is involved. Interestingly, the OOV percentage
converges to a certain level as the vocabulary size increases, indicating that new words always
occur no matter how many words we have observed.

For words that are already in the vocabulary, there are also unseen words that are absent
in the parameter estimation phase but appear in a new document. A naive implementation of
the model described in the previous section would be tough when dealing with unseen words.
For example, Eq. (1.52) will simply give a zero probability if the word V; does not occur in
any training example labeled with c. In consequence, for a new example containing V;, Eq.
(1.53) will assign it a zero probability. This result is obviously unreasonable. However, we
should not simply attribute it to the model design itself. Instead, a primary reason for this is
the insufficient data used for parameter estimation. This is also explained by Zipf’s Law: a
small number of words occur quite often, while a large number of words occur rarely.

However, we cannot suppose that we always have access to some data where every word
occurs sufficiently. Alternatively, one could adopt smoothing techniques to redistribute the
probability over the vocabulary. Consider Eq. (1.52) as an example. We can add a small
number to each V;, and rewrite the equation as:

COUD‘E(V:L" C) +«
' N 1.66
pi(c) Elgilsncount(vg/,c)+n.a ()

where « is the default count that we assign to each word. In this way, p;(c) gives a non-zero
probability even if count(V;,c) = 0. Eq. (1.66) is doing something like subtracting word
counts from high-frequency words and reassigning the subtracted counts to low-frequency
words. This method is called additive smoothing or add-« smoothing. It is one of the
simplest smoothing methods. For other methods, we refer the reader to language modeling
papers where smoothing is in heavy use [Chen and Goodman, 1999].

1.3

1.3.1

1.3 General Problems 37
General Problems

Building a simple text classifier is a good start but not enough for solving complicated, diverse
real-world problems. For a more general picture of how modern machine learning systems
work, we now discuss some problems that are important when designing such systems.

Supervised and Unsupervised Models

Supervised learning deals with labeled samples, by which we mean that an input x is
associated with an output y. Given a set of input-output pairs {(z(1),yM) ... (25 (K},
the task here is to learn a function f(-) that maps each z(*) to y(*):

y B = f=®) (1.67)

This process is called supervised because learning f(-) is guided by the manually annotated
answer y(¥) for (%), In general, y(*) is called the ground-truth or gold-standard label of z (k).
After that, when a new input ey, comes, we use the learned function f(-) to predict the output.
We will say that the supervised learning succeeds if the prediction f(Zyew) is the same as the
ground-truth ypew-.

The vast majority of NLP can be framed as supervised learning problems. Assigning a
class to a document is no doubt one of the simplest cases. Other NLP tasks include but are not
limited to producing a sequence of labels, a piece of text, a syntax tree, and a graph.

In contrast to supervised learning, unsupervised learning deals with unlabeled samples, in
other words, for each sample, we have an input x in the absence of the correct output . In this
case, we need an algorithm that learns from the unlabeled data {:z:(k)} the mapping function
from z(*) to some output. Since there is no human intervention on the output of the function,
algorithms of this kind need to discover patterns in {ZC(k)} and optimize the way we represent
{iL'(k)} and function outputs by some criteria. These criteria are typically inspired by human
prior knowledge so that the resulting function could output something that we expect.

A common example in unsupervised learning is word clustering. It groups a set of words
by assigning similar words into the same cluster!'!. Based on such a criterion, we can bias f(-)
towards outputting the same cluster for similar words. A more difficult case is unsupervised
bilingual dictionary induction. It learns a word-level mapping between two languages
without the need of parallel data. The problem is usually addressed, in part, by making use of
the isomorphism of word representation spaces of different languages.

A halfway between supervised learning and unsupervised learning is semi-supervised
learning. It deals with the case in which some of the input data is labeled and the rest is
unlabeled. Thus, it can receive benefits from both supervised and unsupervised learning.
For example, in machine translation, we may have a certain amount of parallel data (i.e.,
labeled data) and orders of magnitude larger monolingual data (i.e., unlabeled data). Often,
a base system is learned on the parallel data in a supervised learning fashion. On top of
it, improvements can be made from training components of the base system on large-scale

e might be difficult and ambiguous to determine if two words are similar or not. We leave this issue to Chapter
3.

1.3.2

38 Chapter 1. Foundations of Machine Learning

monolingual data. This is implemented by either combining a translation model learned on
the bilingual data and a language model learned on the target-language monolingual data,
or pre-training parts of the translation model on monolingual data and fine-tuning the entire
model on the bilingual data.

Broadly speaking, all learning algorithms need supervision. This sounds weird because
unsupervised learning seems to not be signaled by any ground-truth data. However, from a
general learning perspective, we should not restrict ourselves to labeled data for receiving
supervision signals. Even for an unsupervised learning problem, we still need to supervise the
learning process by prior knowledge and hidden patterns in the input data {x(k) }. In this sense,
unsupervised learning is not “learning without supervision”.

Taking “supervision” as a concept in a broader sense, more paradigms can be seen as
instances of machine learning, though not necessarily belonging to either supervised learning or
unsupervised learning. An example is reinforcement learning. It models how a system makes
a sequence of decisions. This is achieved by operating an agent in an environment. The agent
receives a feedback (or a reward) from the environment when making a decision (or taking an
action). The goal of reinforcement learning is to learn a decision model that maximizes the
reward along the steps the agent takes. The real reward here is available only when the agent
reaches some state, such as the end of a game. As such, reinforcement learning can describe
problems where the reward is over a longer period (call it distant reward). This differentiates
reinforcement learning sharply from standard supervised learning, traditionally concerned with
instant supervision signals that are encoded in labeled data in advance. This characteristic fits
many NLP problems. For example, a text generation system generally generates a sequence of
words from left to right, but it is hard to determine if a word is properly predicted until the
whole text has been generated.

Another example is self-supervised learning. It addresses unsupervised learning problems
in a supervised learning manner. A general idea is to frame the unsupervised learning task as a
pretext task that can be used in solving the original problem. In the pretext task, ground truth
can be generated from input data. The learning therefore receives supervision from self-made
signals instead of manual labels.

Self-supervised learning has indeed been quite successful in NLP. Perhaps pre-training
is one of those which have made the most incredible progress. In pre-training, one can train
some model (such as a language model) via self-supervised learning, and then apply parts of
the model to some downstream system (such as a sentiment analysis system). It offers two
advantages. First, the self-supervised, pre-trained models can be scaled to a huge amount of
data because they require no labeled data. Second, pre-training is general itself and can be
applied to a wide range of downstream tasks. In Chapter 7, we will see a few examples of
applying self-supervised learning to NLP models.

Inductive Bias

We informally describe (supervised) machine learning problems as an inductive reasoning
(or inductive inference) process: we use specific observations (such as labeled documents)
to make a generalized model (such as a classifier). For example, we may observe that word

1.3 General Problems 39

cooking frequently occurs in some documents talking about food. We would say that, based on
inductive reasoning, cooking is an important indicator for all food documents. This “specific-
to-general” method is also called induction sometimes. Once we have an induced model, we
can apply it to describe new observations, as a deduction process.

Induction is the most widely-used principle in designing learners of modern machine
learning systems'2. Imagine that there is a hypothesis space (or model space, or learnable
function space) consisting of all possible models that we could make. Learning a model is
thus the same as selecting a model in the hypothesis space by inducing from the given training
samples. However, we cannot simply assume an oracle model that works well on all unseen
samples. A reason for this is that searching for the “best” model in a huge hypothesis space is
computationally infeasible. There would be an infinite number of dimensions along which we
can design models if the hypothesis space is unconstrained. This problem is essentially some
sort of the curse of dimensionality'>. Another reason is that many models in the hypothesis
space can fit training samples well, but only some of them can fit unseen samples. There is a
risk that we select a “weak’” model for test data although it is “strong” for training data. This is
relevant to overfitting, a concept that we will discuss later.

A natural solution is to define priors on the hypothesis space in a way that allows some
models to be more preferable than others. A simple example is that we restrict classifiers to
linear models (see Section 1.2.3). It is doing something like we impose a prior that excludes
all non-linear models from the hypothesis space.

Such a prior is generally called an inductive bias. In a nutshell, an inductive bias is a set
of assumptions on the problem'#. For example, one can design models in certain mathematical
forms (i.e., model bias); one can choose specific algorithms for learning a model (i.e, algorithm
bias); one can assume the way of generating samples (i.e, sample bias), and so on'”.

Inductive biases try to tell in what way we should describe a problem. Better results
are generally favorable when inductive biases meet what really happens. This explains why
solutions to some problems prefer certain model architectures (or model biases). Of course,
more and stronger inductive biases could make it easier to solve a problem. However, inductive
biases are not always helpful, especially when they are not close to the reality.

Let us consider a dice rolling game. Suppose you have a 6-sided dice. Before rolling the
dice, you guess a side (say a number from 1 to 6). You will win if the dice lands on the same
side you guess. You are a gambler and try to win as many times as possible. In your experience,
a random guess is the best choice in this game because all sides should have an equal chance
of appearing (i.e. a chance of 1/6). This is true when you play fair dice. However, one day,

12Not all machine learning methods should follow an induction process for learning a model. There are other
options for different types of problems, including deductive reasoning, abductive reasoning, analogical reasoning
(or transduction), and so on [Hurley, 2011].

3The curse of dimensionality refers to the problems that generally appear as the dimensionality of the hypothesis
space increases. For example, data sparseness is a common problem that arises when processing high-dimensional
data, and is thus a kind of the curse of dimensionality.

14 A more formal definition can be found in machine learning textbooks [Mitchell, 1997]

15As an aside it is worth noting that the term bias is used in many different ways, and there are other meanings
for bias in certain contexts. We will make it clear when a different meaning is used.

1.3.3

40 Chapter 1. Foundations of Machine Learning

we played weighted dice, and it was not easy to win as before. You found that the appearance
of different sides did not follow a uniform distribution. Then, you assumed a multinomial
distribution (because you had the experience of developing naive Bayes classifiers). Before the
game started, you rolled the dice 100 times. You chose the most frequent side for new games,
and you won more. In this example, you made an initial assumption that all six of the sides are
equally likely to occur. This is a very strong inductive bias because your model has 0 degrees
of freedom. It seems to be obvious but does not work for weighted dice. The second inductive
bias, though seems more complicated, is actually a weaker assumption, because a multinomial
distribution defines a larger family of models and gives room to finding appropriate models.

In general, all machine learning models need some sort of inductive bias. Many of them are
implicit assumptions. Sometimes, we are even not aware that we are making these assumptions
because they are so “obvious” and “logical”. On the other hand, if the assumption is wrong then
it is harmful to problem-solving. So we still need some experience to avoid easily neglected
mistakes.

Non-linearity

Non-linearity is the nature of most real-world problems, whereas it is not easy to use a linear
model to solve a non-linear problem. See Figure 1.3 for examples of varying degrees of
classification difficulty. In Figure 1.3 (a), the two classes can be separated by a hyperplane. In
this case, the problem is linearly separable because the decision boundary can be represented
as a linear function. In contrast, in Figure 1.3 (b), we cannot draw hyperplanes to perfectly
separate the two classes. Instead, we need some non-linearity for better separation, such as
hyperspheres. A more difficult case is shown in Figure 1.3 (c) where the decision boundary is
highly complex.

Although the theory of non-linear systems still has not been fully studied, there are several
methods that help us introduce non-linearity into machine learning systems.

* Feature mapping and kernel methods. Recall that a linear classifier can be formulated
as a function f(w -x), where w is the weight vector, x is the feature vector, and f(-)
is the function that returns one class (say c¢,) if its argument > 0 and the other class
(say cp) otherwise. The idea of feature mapping is that we map the feature vector x
into a higher-dimensional space so that the problem is linearly separable in the new
space. For example, let ¢(-) : R? — R* be a mapping function and x = [1:1 1'2} be a
2-dimensional vector. We assume that

¢([m1 232}) = [m%—&—x% 1 X9 1} (1.68)

By choosing w = [1 -8 =8 28} , we get a new classifier:

fowo(@)) = f([1 -8 -8 28] -[2+a3 @ @ 1])
= f((z1 -4+ (z2—4)> - 4) (1.69)

1.3 General Problems 41

Linearity Non-linearity Non-linearity
8 T T 8 ‘ ‘ 8 (‘more d‘ifﬁcult‘) -
- O
& OpO0no qﬂnumunnrgaﬂn o

6 | nun Dﬂﬂ x7 6 7@ @n |
~ oo)Q(x N n%n o
S4B X x| =40 L0
a % >$?$(X E:I o o o
20 >§()2(B 2 0O nn dg I:II:I I:||:|
)2(og o E‘:'nu

| | 0 | . | | 0 |
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

z1 z1 z1

Figure 1.3: Linearity and non-linearity in binary classification. The first problem (left) is
linearly separable because there exists (at least) a hyperplane that perfectly separates the data
points in the two classes. The property of linear separability does not hold in the second
problem (middle). Rather, we need a circle-like decision boundary. The decision boundary
would be more complex if there are areas where the two classes of the data points are mixed
and more or less indistinguishable (right).

It defines a decision boundary (i.e., a hypersphere (11 —4)? + (2o — 4)% = 4) that
perfectly classifies the samples in Figure 1.3 (b). In other words, we use a linear model
on the mapped feature space to create a non-linear model. However, computing the
mapping function might be inefficient. This is typically addressed by using kernel
methods. In kernel methods, the calculation of vector dot-product in the new space is
performed efficiently by using a kernel function in the old space. This method is called
the kernel trick. It has been successfully adopted in classification and other machine
learning models, such as support vector machines [Cortes and Vapnik, 1995].

* Non-linear activation functions. Another way to add non-linearity is to use activation
functions. A common method is to stack a non-linear activation function on top of a
linear model. For example, the function f(-) used in the above example is itself a non-
linear function. There are many kinds of non-linear activation functions. We can choose
from them, depending on what form of the output we want. For more sophisticated
models, more activation functions can be inserted into the intermediate computing steps
to develop a more powerful and expressive model. For example, a deep neural network
is a stack of sub-models (call them layers) where each sub-model may involve one or
more activation functions.

* Non-parametric methods. Non-parametric is a term that is originated from statistics.
In non-parametric statistics, statistical inferences are made without any assumption on
underlying distributions of data. In machine learning, non-parametric methods follow
the same idea. They do not assume any mapping function from input to output as
Eq. (1.69). This differentiates them from parametric methods that explicitly learn a
mathematical form of variables (or parameters) to describe the problem. An example of

1.3.4

42 Chapter 1. Foundations of Machine Learning

non-parametric methods is k-nearest neighbors. It makes a prediction for a new sample
based on the k nearest neighboring samples in training data. Note that non-parametric
does not mean parameter-free. Rather, it means that parameters can change. On another
hand, non-parametric methods do not ensure a fixed model. They grow in model size
as more training samples are available. As a reward, they can handle highly non-linear
problems when training samples are sufficient.

Still, non-linear methods do not work alone. Linearity is surely an important component
for most practical machine learning systems. This has two flavors. First, more non-linearity is
not always better. We do not need to complicate the modeling if a linear model is enough for
solving the problem. An example is that most state-of-the-art machine learning models are a
combination of linear and non-linear sub-models. This is also an instance of Occam’s Razor —
the simplest solution is almost always the best. The second flavor is the linear approximation of
non-linear behaviors. Linear models are a good alternative if the non-linearity of the problem is
not obvious. In such cases, using linear functions to approximate precise solutions is probably
more efficient for practical purposes.

Training and Loss Functions

Almost all machine learning algorithms involve a training step. Typically, it refers to the process
of estimating the mapping function and the associated parameters from data. Here we follow
a conventional definition of the training problem: given a model or mapping function, we
improve some objective by evaluating the model through some training experience [Mitchell,
1997]. For example, training a naive Bayes text classifier requires maximizing a likelihood
function (i.e., the objective) on a number of labeled documents (i.e., the training experience).

Often, the training problem can be framed as an optimization problem. As such, we
optimize some objective function via some training algorithm. Although an ideal objective
function is a performance measure on test samples, we cannot take it in optimization since the
test samples and corresponding labels are assumed to be inaccessible in the training phase.
Practical objective functions are instead defined as a surrogate for the measure on test data. On
the other hand, these objective functions are not necessarily some sort of performance measure,
but some metrics that are assumed to correlate with the performance on test data.

Let us consider a general case. Suppose yy = fp(x) is a model that reads a feature vector
x and produces an n-dimensional vector yy. For example, in text classification, x is the
bag-of-words representation of a document, and yy is a distribution over a set of classes. 6
is the parameters of the model. The subscript emphasizes that the model is determined by
6. We further suppose that y,.1q is the gold-standard vector. Then, we define the objective
function as a function that counts errors in y, with respect to ygo14, denoted as L(yg, ygold). It
measures how bad it would be if we predict yy instead of y,,q. Given a model, the training
problem can be described as finding the “best” parameters 0 so that L(yj,¥gold) is minimized:

0 = argerninL(YGaYgold> (1.70)

1.3 General Problems 43

This formulation can be easily extended to the case of K training samples:

K

. 1

6 — arg;mnEZL(yék),yégd) (1.71)
k=1

Once we obtain 6, we can use f3(x) as a fixed model for prediction.

L(yg,ygo1d) and % Zszl L(yék),ygéi 4) are usually called loss functions (or cost func-
tions). A loss function can be defined in many ways, depending on what type of problem
we address and what prior we want to impose upon training. Here, we first consider the case
in which yy is a probability distribution. It is quite common in NLP, e.g., yy could be a
distribution over a vocabulary, a distribution over a list of documents, a distribution over a set
of syntactic labels. For such a type of model output, the most commonly-used loss functions

are measures of divergence:

* Divergence-based Loss. Divergence-based loss functions compute the degree of dif-
ference between the two distributions yy and ygqq. For example, cross-entropy (see
Section 1.1.2) is one of the most popular loss functions used in NLP. One can, of course,
choose other divergence-based measures, such as the KL divergence and the Jensen-
Shannon (JS) divergence, which can be found in most statistics textbooks. Note that
MLE is also a special instance of the divergence-based objective. It is the same as the
cross-entropy loss if y.1q is a one-hot vector where the entry of the correct label is 1
and other entries are all 0.

However, machine learning systems are not always restricted to distribution-like output.
Rather, yg could be a vector in R™. An example is the discriminant functions used in clas-
sification (see Section 1.2.3). They assign a score to each class, indicating how strong the
model believes it is the answer. One way to define the loss functions on real-valued vectors
is to transform them into distribution-like forms'®, and resort to the divergence-based loss.
However, normalization is not always necessary, especially when we need a score out of the
range of [0, 1]. It is more common to compute losses on the raw output of these models. Here
are some examples.

* Distance-based Loss. It is natural to take loss as some sort of distance in geometry. A
general example is the p-norm distance (see Section 1.1.1):

n 1/
Lyoysoa) = (D lwo() ~vgoa @) (1.72)
i=1

For example, we would have a Euclidean distance-based loss function if p = 2. The

distance-based loss intrinsically describes a curve fitting problem: we learn a curve

(k)

sola) J+ It is also called regression 7. A simple

vo = fo(x) to fit the points {(x(k),y

16For example, we can normalize the entries of a vector by the sum of these entries.
7When the model output is a vector with two or more dimensions, the problem is called multivariate regression.

44

Chapter 1. Foundations of Machine Learning

example is quality estimation of machine translation!8. It learns to predict translation
quality (i.e., yg) for any pair of source and target sentences (i.e., x). We would say
that the prediction is accurate if the predicted score is close to that made by humans.
By using Eq. (1.72), one can design many loss functions for regression models. For
example, mean square error (MSE) is a popular regression loss function. It is the sum
of squared Euclidean distances between the prediction and the gold standard:

L(yo.Ygor)) = Y _|yo(i) = ygora(i)|? (1.73)
=1

Another example is mean absolute error (MAE). It is precisely the form of Eq. (1.72)
when p = 1.

0-1 Loss. The 0-1 loss is widely used in classification problems. It chooses a value
of either 1 (penalty) or O (no penalty), and penalizes the case in which the predicted
label and the gold-standard label are not the same. Let ¢y = argmax,yg(c) be the
label that is predicted by selecting the entry in yy with the highest value. Likewise, let
Cgold = ArgMmax, Ygold () be the gold-standard label. The 0-1 loss is defined to be:

L(yea}’gold) = LO-I(COanOId)

_ {1 Cﬁ#cgold

0 cp= Cgold

(1.74)

Margin-based Loss. A margin is the difference between the predicted scores of the
correct label cg014 and an incorrect label c:

magin(c,cgold) = Yo(Cgola) —Yo(c) (1.75)

It indicates a distinction between cgo1q and c. So, a natural idea is to ensure that the
margin is sufficiently large, or at least exceeds a minimum. This is called large-margin
training. Let A(c,cg01q) be a predefined cost of replacing label cg01q With label c,
satisfying AA(c, cgo1q) > 0, and A(c, cgolq) = 0 only if ¢ = cgo1q. Our goal is to enlarge
margin(c, cgold) — A(¢, Cgold), in other words, the larger this value is, the smaller the
loss is. Then, the margin-based loss is given by:

L(y9,ygold) = max (0, max — (magin(c, cgola) — A(c, Cgold)))
= max (O, max (yo(c) — yo(cgola) + Ae, cgold)))

= max (0, Yo (c) —yo(cgola) + A(c, Cgold)> (1.76)

C

131n machine translation, quality estimation comprises several different tasks (see https://www.statmt.
org/wmt2l/quality-estimation-task.html). Here we use the term to refer to the task that predicts
an evaluation score directly.

https://www.statmt.org/wmt21/quality-estimation-task.html
https://www.statmt.org/wmt21/quality-estimation-task.html

1.3 General Problems 45

Designing A(c,cgo1q) depends on the problem. A simple choice is A(c, cgo1a) = 1 for
¢ # Cgold- This makes Eq. (1.76) a type of the hinge loss. Another variant of Eq. (1.76)

is using a sum instead of a max:

L(yp,ygold) = Z max (07 yo(c) — yo(cgola) + A(c, Cgold)) (L77)

* Ranking-based Loss. Ranking-based loss (or ranking loss) is used in several different
areas, such as information retrieval, classification and metric learning. It deals with
the problem where we want to order a set of scored items. Suppose the model output
yp corresponds to a set of n items {¢;}, each for an entry of yy. We define {1y(c;)}
as the order of {c¢;} by {yg(i)}. For example, given {yg(i)} = {0.3,—2,1}, we have
YPo(c1) =2, Pg(c2) = 3 and Yg(c3) = 1. Likewise, we can define {1)4014(c;)} as the
gold-standard ranks. Note that {tg014(c;) } can be induced in some way without the need
of ygolq if the problem only requires orders, rather than scores. An idea of ranking-based
loss is to model the ranking mistakes in {t9(c;)} with respect to {1go14(c;)}. There are
many ways to “count” the mistakes. A simple method is to penalize the case in which a
pair of items are ordered incorrectly. As such, the ranking-based loss somewhat shares
the same spirit of that used in binary classification — we categorize a pair of items as
correct or incorrect. Let €2 be a set of ordered item pairs:

Q= {(4,7)|¢go1a (i) < dgora(y)} (1.78)

The loss function is given by the equation:

L(y0:Yeold) = Y Lpair(ys(i),56(5)) (1.79)
(4,7)€Q

where Lpair(yo(4),y0(j)) is a classification loss, such as the hinge loss used in [Collobert
and Weston, 2008]:

Lpair(yo(i),50(j)) = max (0,y9(i) —yo(j)+1) (1.80)

This method is called the pairwise method. Also, one can define the ranking-based
loss in a pointwise or listwise manner. These loss functions are extensively used in
developing systems to rank objects.

* Contrastive Loss. Contrastive loss is typically used in contrastive learning. It assumes
that, given a sample, there is a similar sample that is labeled as “positive”, and there
are a number of dissimilar samples that are labeled as “negative”. A natural idea is
to minimize the distance between similar samples and simultaneously maximize the
distance between dissimilar samples. Return to the formulation here. For a model output
y9, let y* be the positive output and Y~ = {y~ } be the set of negative outputs. Also,
we use Ygold to denote the tuple of y™ and Y~ instead of a single gold-standard vector.

46 Chapter 1. Foundations of Machine Learning

A form of the contrastive loss function is given by the equation:

L(Y@Q’gold) = L(y97y+v{y_})
= logD(ye,y")—log > D(ysy")
y €Y~
+
~ log D(yg,y™") (1.81)

>y-ey-D(yo,y™)

where D(a, 3) is a measure of the distance between v and 3. For example, we can
define D(«, 3) as the Euclidean distance (see Eq. (1.72)). A problem here is how to
generate positive and negative model outputs. In the supervised learning setup, one can
simply treat the gold-standard vector as the positive output. For negative outputs, the
model f(x) can output a number of y through accepting different x. In the unsupervised
learning setup, y* and Y are often defined based on some “natural” annotation. For
example, f(-) can be a function that maps x to something and back to x (call it auto-
encoding). Then, y ™ is x itself or some neighbors of x, and Y ~ is a set of randomly
generated vectors.

* Error-based Loss. Evaluation metrics, as generally used in counting errors in system
output, can also be taken to be part of a loss function. For example, in machine translation,
a popular evaluation metric is BLEU!. Thus, we can take minimizing 1 — BLEU as the
objective. Let Error(yy, ygold) be the “number” of errors in comparing yg with ygo14.
The error-based loss is just the same as this number:

L(yg,ygo1d) = Error(yg,ygold) (1.82)

So far we have presented several loss functions for a wide variety of problems, such as
classification, regression, and ranking. As we will see in this book, different loss functions
have different effects on model behavior. However, testing all possible loss functions is simply
impractical because there are so many of them. Users instead need to choose or design the
most suitable loss functions for their own problems. This may take time but is necessary.

On another hand, there are general methods to improve the design of loss functions. For
example, we can assume that the model output yy is not a single vector but a variable with
some probability. The loss L(yg,¥gold) is thus treated as a variable too. Then, we redefine the
loss function as the expectation of L(yg,ygola) under the distribution of yj:

L({YG}aYgold) = IEyngr(y9|x) [L(yevygold) : Pr(Y@’X)] (1.83)

where the use of {yy} means that yy is not fixed. By accessing the space of possible yy, it
offers a better estimation of the loss. This is essentially an instance of the Bayesian approach.
L({yo},¥go1a) is called the Bayesian risk or risk for short, sometimes.

Another way to improve training is introducing priors into the objective. A typical method

BLEU is a precision-like score between 0 and 1. The higher the better.

1.3.5

1.3 General Problems 47

is to add a regularization term R to the objective, like this:

0 = argminL(ys,ygod) +a- R (1.84)
0

where R could be another function that describes some aspect of the problem, such as the
number of parameters. « is a hyperparameter controlling how much we respect R in training.
The design of R is itself an important problem for many practical machine learning systems.
Although we do not discuss them here, we will look at a few later in this book.

Once the objective is determined, we need some training algorithm to perform optimization.
This is a very broad topic in machine learning, such that we do not even try to describe any of
them in detail in this chapter. Anyway, one should not expect a universal algorithm that can
solve all training problems, and there are indeed some algorithms that are suitable for certain
types of problems. For example, we can use gradient descent to train a neural language model
with the cross entropy-based loss [Bengio et al., 2003a], can use quadratic programming to
train an SVM model with the hinge loss [Cortes and Vapnik, 1995], and can use minimum
error-rate training (MERT) to train a statistical machine translation model with the 1 — BLEU
loss [Och and Ney, 2002].

Overfitting and Underfitting

The standard process of (supervised) machine learning comprises a training step and a test
step. While one may try to minimize the loss on training samples, the learned model is used
to deal with new samples that are never seen before. It is like what we experienced in our
lives, for example, a student studies hard and wishes to get good grades in final exams. Yes,
studying hard = good grades should always be true, but it does not mean that memorizing
all the questions and answers in textbooks is a good way to perform well in exams. It always
happens that the test questions are something different from what we learned. We therefore
need some ability of generalization .

In machine learning, generalization is used to describe how well a model learned through
experience predicts on new data. A system is thought to be of excellent generation performance
if it learns little from training data but forms its prediction ability based on some “god” inductive
biases on the problem. However, good generalization does not mean less training. Instead,
practitioners would like to train a machine learning model on more training data to prevent
it from memorizing all the things. Generalization is a very complex issue determined by
several factors, including problem complexity, model architecture, amount of training data,
training algorithm and so on. While there are no standard rules to ensure good generalization,
researchers always try to address it somehow.

To describe how well a model generalizes to new data, there are two important terms,
underfitting and overfitting. Underfitting refers to the phenomenon that a model does not learn
sufficiently from the training data and thus has poor performance on new data. For example,
we interrupt training accidentally and deploy the immature model for prediction. The model
cannot perform well on either the training data or the test data. If a model underfits the training
data, then one could improve it in some simple ways. For example, one could train the model

48 Chapter 1. Foundations of Machine Learning

Underfitting Fitting just right Overfitting

Figure 1.4: Decision boundaries of a binary classification problem. left = underfitting, right =
overfitting, and middle = fitting just right. In the underfitting case, there are several obvious
mistakes that are made in separating the two classes of data points. By shifting the decision
boundary up a bit (middle), we obtain a satisfactory separation result, where most of the data
points belonging to the same class are placed on the same side of the decision boundary. By
contrast, a perfect separation requires a highly complex decision boundary instead (right).

for a longer time; one could remove unimportant portions from the training data; one could
use a model with a simpler architecture instead.

In contrast to underfitting, overfitting refers to the phenomenon that a model fits the
training data well but generalizes poorly on the test data (see Figure 1.4). A simple example
of overfitting here is the OOV problem (see Section 1.2.5). It would be a disaster if a text
classification model just fits those words that have been seen but gets stuck when new words
appear.

The causes of overfitting are diverse. An example is learning a complex model on a small
training dataset. The model complexity often matters when we design a machine learning
model. If the model is complex and has many parameters, then it would be much easier to
overfit a small number of samples (see Figure 1.4). The problem would be more difficult if
there is noisy data, because of the errors of “garbage in, garbage out* in training. In addition,
excessive training is another cause of overfitting. For example, we can heavily tune a system
to enforce it to model the data with no errors. The system would be fragile for new samples,
even when there are small fluctuations in input.

Overfitting can be alleviated in many ways. Here are some commonly-used techniques.
* Using more (high-quality) training data. Large-scale training helps the model capture
the true patterns in data. However, adding noisy data would do this in a negative way.

» Using validation data. Validation data is some test data but used in training. For
example, a dataset can be divided into held-out data and training data. One can simply
early stop the training process when the performance drops on the held-out data.

* Using simpler model architectures. As noted previously, Occam’s Razor is a principle

1.3 General Problems 49

we can follow in model design. Models with more complex architectures, though
powerful, would be more likely to fit the noisy data points if the problem is not so
difficult itself. Using a simpler model architecture instead could make it easier to model
the dominant patterns in the data.

Regularization. Regularization is another way to control the model complexity. Typi-
cally, it regularizes model parameters by priors. An example is smoothing (see Section
1.2.5). It re-estimates the distribution of words after training. A more general method
is regularized training (see Eq. (1.84)). For example, we can define the regularization
factor as the /1 norm of the parameters, and bias the model to those whose parameters
are not in large absolute values.

Combining multiple models. A better prediction can also be made by ensembling
multiple models. These models (call them component models) are in general of different
parameters or architectures, and/or are trained with different portions of the data. The
variance in models can reduce the risk that all these models overfit the data in exactly
the same manner. These models are, therefore, less likely to make similar mistakes in
prediction.

1.3.6 Prediction

Although we restricted our discussion to classification in previous sections, (supervised)

machine learning is not just a task of predicting a label for an input object. There are many

types of machine learning problems, depending on what form of the prediction is defined.

Classification. Classification is perhaps one of the most common machine learning
problems. A classification system is required to assign one or more classes to an input
object.

Regression. In statistics, regression studies the relationship between a dependent
variable (or an outcome) and an independent variable. While regression has many
applications, it is often framed as score prediction in NLP. For example, taking a movie
review as input (i.e., an independent variable), the regression model learns to predict a
recommendation score (i.e., a dependent variable).

Ranking. A ranking model is to predict the order of a set of input objects. For example,
a model ranks a number of translations in terms of translation quality.

Structure prediction. Many machine learning models are required to output not only a
real value or a class but a tree or a sequence. The task of predicting structured outputs
is called structure prediction. For example, a syntactic parser is a structure prediction
system, as its output is a tree structure.

In addition to these, mining is a term that is frequently used in the community, although

it is somehow not a standard machine learning problem. The problem of mining refers to

discovering unknown patterns in the data. An example we would like to categorize into this

is word clustering. Given a number of words, the clustering system “predicts” the cluster for

each word. The output of such systems is not pre-defined. Patterns in data are themselves hard

1.4

50 Chapter 1. Foundations of Machine Learning

to describe. Thus, the term “mining” could cover a range of problems. To avoid confusion, we
will use more specific terms (such as word clustering) to refer to mining-related problems.

Despite a fundamental aspect of machine learning, prediction is conventionally assumed
to be trivial, given that many models and methods are tested on standard classification and
regression tasks. On the other hand, prediction is non-trivial in structure prediction, such as
parsing and machine translation, which are very common in NLP. Essentially, predicting a tree
or a sequence is a search problem. For example, there exist a theoretically infinite number
of translations given a source-language sentence. Even if we have a model to evaluate every
translation, finding the optimal translation in the search space is obviously a computational
challenge. In such cases, we need some way to make it feasible to perform search. This is
implemented by either resorting to the general search algorithms in artificial intelligence or
developing new algorithms for specific problems. As an aside, the study on the search problem
offers a new view on the mistakes made by a machine learning model: some of the errors are
due to inaccurate modeling (call them model errors), and the rest are due to inaccurate search
(call them search errors). For prediction, eliminating search errors is a goal but often at the
cost of a considerably large amount of search effort. We sometimes must trade off between
efficiency and accuracy if a machine learning model is deployed for practical purposes. We
will see a few examples in Chapter 5.

Model Selection and Evaluation

For most machine learning problems, the goal is to find a model that would perform the best
on new data. Two problems can be separated out from this goal [Hastie et al., 2009]:

* Model selection. Selecting the best model on training data by some criteria.
* Model evaluation. Estimating the performance of a given model on new data.

As noted in Section 1.3.4, loss functions (or error functions) are common ways of measuring

errors in a prediction yp = fg(x) with respect to a gold-standard y,1q. Given K labeled

training samples {(x(), ygj)l Qs (x5, yégzi)}, the training error is given by

Ertipain = L({yék)},{yégd}) (1.85)

where {yék)} are the predictions over the training dataset, and {yg;{ 4 are the corresponding

gold-standards. L({yék)}, {ygz%) is in general defined as the averaged loss over all training
samples:

K
1

Ly} o) = 7 2 Lo Ygela) (1.86)
k=1

or defined as a single measure on the entire set of training samples. Likewise, we can define the
test error on the test dataset, denoted as Erriegt. Erriest 1S also called generalization error.
It indicates how well a model generalizes to new data.

1.4.1

1.4 Model Selection and Evaluation 51

T T T T
<175
8| — Training error (Erry,i, = cross-entropy)
— Test error (Erriest = 1 — BLEU) <
2 6| -,
3 170 2
- =
4 |
—
20 ! ! ! ! ! ! ! 65

0 10 20 30 40 50 60
Time Elapsed (in training epochs)

Figure 1.5: Curves of training error and test error for a machine learning system. The training
error is measured in terms of the cross-entropy loss, and the test error is measured in terms of
1 —BLEU. All statistics are collected by running a neural machine translation system on the
IWSLT De-En benchmark. The training error continues to drop as more training epochs are
involved. The test error, on the other hand, follows a trend of first going down and then going
up. When the test error starts to increase, the model is likely to overfit the training data.

In the preceding sections we assumed that minimizing Erry;,i, is the objective of training,
ie., 0= argming Erry,in,. However, we cannot assume that fé(‘) can obtain the minimum
Frriest in the same way. See Figure 1.5 for learning curves of a machine translation system.
Clearly, Erriest does not correlate with Erri,.in well. The training error keeps reducing as
training proceeds. However, the test error goes up after following the same trend as the training
error for a period of time, indicating overfitting of the model. This makes the problem a bit
more complicated, as we cannot always trust Err,,i, although it is and should be the measure
of the goodness of training. Surely, we need some way to select a better model, in addition to
looking at Erry;,i, only.

Strategies for Model Selection

Choosing the optimal model on the training data is challenging because the motivation here is
“greedy” itself — we hope that a machine learning model can generalize from a finite, even a
“small” number of samples. From the statistical learning point of view, the challenge is due to
the way we define the learning problem. An implicit assumption in machine learning is that all
data is generated by some distribution. Thus, the learning problem is determined by generating
the training data via a data-generation distribution and the test data via another distribution.

For example, if both the training and test datasets are sufficiently large and obtained via the
same data-generation distribution, then the learned model can perform on the test data as well
as on the training data. In this case, it is easy to generalize the model from the training data to
the test data. By contrast, if all training and test data is generated in an arbitrary manner (say a
uniform distribution over the entire space of data points), then the model will fail to generalize,
as everything learned on the training data does nothing with the test data.

52 Chapter 1. Foundations of Machine Learning

It will be more interesting if we consider all possible problems. The no free lunch theorem
states that all learning algorithms will perform equally well if we average the test error over
all problems?’. In other words, all learning will make no sense if there is no preference for
certain problems. However, developing a universally good machine learning model on all
problems is idealistic. In real-world applications, the training and test data is always assumed
to at least in part follow some distribution. Therefore, there are indeed some ways to capture
this distribution and improve the generalization ability of a model. Two scenarios are generally
considered in improving machine learning systems:

* Given the model design and the training algorithm, how to develop or select training
data to reduce the test error.

* Given the training data, how to develop or select a model to reduce the test error.

The first scenario is complicated and relates to many practical issues, e.g., annotation, data
cleaning, data quality estimation and so on. Since these issues are not the focus for model
selection, we do not discuss them but leave some to subsequent sections. Here, we focus on
the model selection problem in the second scenario.

1. Model Complexity

The simplest method of model selection might be testing the models on validation data.
Typically, this data does not overlap with either training or test data, but is assumed to be
generated in the same way as the test data. However, such data is not always available. In some
cases, we do not even know anything about the test data. So many model selection methods
are validation-free.

A common way is to use model complexity (or model capacity) as an indicator of the
selection. In machine learning, model complexity can be interpreted in several different ways.
For example, a non-linear model is intuitively more complex than a linear model. Also, a
model with more parameters is more complex than a model with fewer parameters under
the same model architecture. More formal definitions could be found in the theoretical part
of machine learning, such as the Vapnik-Chervonenkis dimension or the VC dimension
[Vapnik and Chervonenkis, 1971]. Here we simply treat model complexity as a measure of the
expressive power of a model, i.e., a higher model complexity indicates more hypotheses that
the model can express.

While complex models are usually assumed to be more powerful, higher model com-
plexities are not always helpful. In fact, complex models are more likely to overfit the data,
especially when a small dataset is used for training. By contrast, too simple models are often
prone to underfitting. We therefore need to seek an “optimal” level of model complexity. Figure
1.6 plots training and test errors against model complexity. An “optimal” complexity can be
chosen when the training error tends to convergence. While Figure 1.6 shows an intuitive
example, it is still hard to say at what point we can choose the model. The common practice,
though not formally described in most cases, is to choose among those “good” models by using

20The no free lunch theorem was originally presented in a classification scenario [Wolpert, 1996], and was
further extended to search and optimization problems [Wolpert and Macready, 1997].

1.4 Model Selection and Evaluation 53

— Training error
— Test error

Error

Model Complexity

Figure 1.6: Curves of training error and test error under different model complexities. Complex
models help in reducing the training error as they can compute complex functions in fitting
data points. However, a too large model complexity is more likely to lead to overfitting and is
harmful to the generalization ability of the models. For example, the test error increases as
more complexity is added.

Occam’s Razor. Suppose we have a set of models that perform comparably well on the training
data but are of different complexities. According to Occam’s Razor, the simplest model is the
“best” choice. Many criteria are available to measure the model complexity. For example,

* Number of parameters. Though very simple, counting the number of parameters is the
most intuitive yet effective method. It can be extended to counting the effective number
of parameters which is defined to be the trace of the matrix used to transform y,.1q to
Yo-

* p-norm of parameters. The p-norm of a parameter matrix is also an indicator of how
complex a model is (see Section 1.1.1). For example, according to the /; norm, a model
with larger absolute values for parameters is more complex.

* Description length. Description length is a term used in data compression. For example,
it could be the number of bits used to store a model. Thus, the minimum description
length (or MDL) indicates the most compressed model.

* The VC dimension. It is originally from computational learning theory. In short, the VC
dimension can be defined as the maximum number of data points that can be shattered
by the classifier.

In addition, there are other choices for defining the criterion, including the Akaike infor-
mation criterion (AIC), the Bayesian information criterion (BIC), the minimum message
length (MML) and so on. They can be found in most textbooks on statistics and/or statistical
learning [Burnham and Anderson, 2002; Konishi and Kitagawa, 2007; Hastie et al., 2009].

54 Chapter 1. Foundations of Machine Learning

2. Bias-Variance Tradeoff

Controlling model complexity to avoid overfitting and underfitting is also linked to the tradeoff
between bias and variance. Bias (or prediction bias) is the amount that the model prediction
differs from the true value. In statistics, bias is a systematic error that cannot cancel out
even if we run a large number of repeated experiments. In general, bias error results from the
wrong assumptions about the problem, such as approximating a non-linear problem via a linear
model. This is very interesting! We can establish the connection of the bias error here with
the inductive bias used in mode design (see Section 1.3.2). For example, given training data,
a large bias model is usually due to the fact that there are more assumptions and the model
is not complex enough. To make it simple, we would say that more (or stronger) inductive
biases can result in a lower model complexity and more bias error in prediction. Occasionally,
the term bias is used as a short for both bias in prediction (from a statistics perspective) and
inductive bias (from a model design perspective), although they are considered to have different
meanings’!.

Variance, on the other hand, describes how spread the prediction is when there are variations
in training data. The variance error also correlates with model complexity. For example, a
complex model tends to exhibit higher variance.

Both bias and variance are sources of errors of a system. A common example is the
bias-variance decomposition of mean squared error. Here we use some notation that differs
slightly from that used in previous sections. Let D be a set of K training samples and fé(D) ()
be a model leaned on D. Further, given a new sample x, let Yoy = fé(D) (x) be the model
prediction and yg.1q4 be the “true” prediction. The bias and variance are defined as:

bias = ED[yg(D)]—Ygold (1.87)
variance = ED[(ED[yé(D)]—yé(D))Q] (1.88)

where Ep [yé(D)] is the mean of Yo(p) Over all possible K sample training datasets. Thus, the
bias is some sort of difference between the mean and the true value, and the variance is some
sort of difference between the mean and the predicted value. Taking the mean squared error as
the error measure, we can write the expected error as:

error = Ep [(Yé(p) - Ygold)Z]

— bias® + variance (1.89)

For lower mean squared error, reducing both bias and variance simultaneously is obviously
an ideal goal. However, it is difficult to make a model that exhibits both low bias and variance.
When one of the two decreases, the other increases (see Figure 1.7). Researchers must
choose the optimal level of model complexity while preventing training from overfitting and
underfitting. This also depends on the problem we intend to solve. For example, a simple

21Bias is more often used in statistics to describe some aspect of an estimator.

1.4 Model Selection and Evaluation 55

Complexity

Figure 1.7: Bias and variance against model complexity [Goodfellow et al., 2016]. The curves
show a conflict in reducing the bias error and the variance error simultaneously. By varying
the model complexity, one can obtain either a low-bias, high-variance model or a high-bias,
low-variance model. Both of the two cases exhibit high test error. For example, a high-variance
model is often of a larger model complexity. While such a model is able to deal with complex
problems, it is more likely to overfit the data. On the other hand, a high-bias model often
means a simpler model but tends to underfit the data. To improve the generalization on test
data, one can seek a tradeoff between bias and variance. For example, there is low test error
when a “middle sized” model is chosen.

model generally has low variance but high bias. However, if we use the simple model (say
a linear model) to describe a complex problem (say a non-linear problem), then underfitting
would probably occur because the problem is too “hard” for the model.

Returning to the model selection problem, the bias-variance tradeoff is not a rule for model
selection, but a principle we must keep in mind. Often, one needs to make compromises to
create a model that makes reasonably good predictions. It is also worth noting that, in many
applications, complex models are usually accompanied with the inefficiency problem. An
appropriate method might be to start with a simple model and only add complexity when it is
needed.

3. Model Combination

Selecting from a set of models is not the only way to reduce generalization error. Alternatively,
one can do this in the opposite way, and combine these models for a “stronger” model. Such a
method is called ensemble learning [Seni et al., 2010; Zhou, 2012a]. A key idea of ensemble
learning is to create a set of component models (or ensemble models), such that they can vote
for a better prediction. The simplest of these is a mixture model that averages the predicted
scores of multiple component models (call it model averaging), whereas a more sophisticated
method can combine the sub-structures of these models.

Component models are in general generated in some way that they can exhibit some
diversity. For example, they can be learned on different portions of the training data, or by
using different initializations for model parameters. Interestingly, it is found that such methods

1.4.2

56 Chapter 1. Foundations of Machine Learning

can guarantee the reduction of generalization error somehow. For example, bagging helps to
lower variance [Breiman, 1996], and boosting helps to lower bias [Schapire, 1990]. These are
linked back to what we presented in Section 1.4.1: the generalization error can be reduced by
either reducing the bias error or reducing the variance error.

But discussing how to combine models is beyond the scope of this chapter. While it is even
not appropriate to categorize model combination as a topic related to model selection, it can be
seen as a means of improving the generalization ability. In this sense, both model combination
and model selection address problems on a similar theme. In fact, model combination is
remarkably effective for many NLP tasks. For example, most state-of-the-art systems in NLP
are based on the combination of multiple models.

Training, Validation and Test Data

We turn now to the data problem. As discussed in the previous sections, in the training stage, a
training dataset is used to fit the parameters of the model. In the test stage, a test dataset is used
to evaluate the learned model. Closely related to test data is validation data, which has come
up a few times in this chapter. A validation dataset is a test dataset as well but can be used in
the training stage. It is commonly used for model selection and tuning hyperparameters.

In many cases, one may imagine that there is some data for training and some additional
data for validation and test. This assumption, however, is not realistic in many real-world
applications. For example, developers cannot always access the data of system use after
deploying a system. From a scientific point of view, there is no “real” new data for test —
when you see new data, it is not new anymore. Therefore, what we address is essentially an
analogue of the problem.

A simple method, as in many research papers, is to verify machine learning models on
benchmark tasks. In these tasks, all data is prepared in advance, and all you need is to run your
models on the data. Such a method makes it easy to compare different systems directly, as all
these systems are trained and tested on the same datasets. Occasionally, we are just given a
number of samples but not told which are for training and which are for test. In such cases, the
data can be divided into parts each of which is used for some purposes. For example, a split
could be 60% for training, 20% for validation, and 20% for test.

While data splitting provides a way to assess the performance of a model, the assessment
result is not always stable due to sampling bias. Sometimes, the performance varies greatly
across different runs of data splitting. The problem is more obvious when the dataset is too
small to perform sufficient training or test.

A common way to weaken the effect of this bias is cross-validation. Cross-validation is a
resampling method. Each round of cross-validation is a new split of data and the result is the
combination of the assessment over the rounds. A simple method is random subsampling that
repeats random partition of the data and averages the performance over runs. Another method
is k-fold cross-validation. It divides the data into k parts. In each round of cross-validation,
some parts are used as training data, and other parts are used as validation and test data. For
example, in 10-fold cross-validation, a model can be trained and validated/tested for 10 times,
each choosing one of the ten parts as the test dataset.

1.4.3

1.4 Model Selection and Evaluation 57

Another note on the scale of data. For practitioners, one of the most frequent questions
is how many samples are enough for learning a good model. This may be the most difficult
question on which different people can have consensus answers. There are many theoretical
results that can tell the bound of errors given a certain amount of data, whereas in most cases
we just simply follow the “the more the better” idea. In another line of thought, a system
could be sample efficient. In general, a sample efficient system can reach a good level of
performance by using fewer samples or seeing the same sample for fewer times. For example,
tuning a pre-trained model is sample efficient because the samples are not used for learning
from scratch but a modest update of the model. Another example is few-shot learning. It aims
to generalize from observing very few samples for a task.

Performance Measure

As an essential part of every machine learning problem, a performance measure describes how
well a system performs given some data. Usually it is used in either designing the training
objectives or evaluating the result of the final system. For example, all those loss functions
described in Section 1.3.4 are some kinds of performance measures.

As for evaluating the performance on test data, a measure is often designed in a way that
we can count the real errors. Thus, re-using the loss functions in training might not be a good
choice for reporting the final score. For example, the widely-used measures for classification
problems are precision, recall and F; score. They are proposed to quantify the ability of a
classification system in certain aspects: given a class ¢, precision computes the fraction of
correct predictions in predicting ¢, and recall computes the fraction of correct predictions on
all samples labeled as c. The F; score is a measure that combines precision and recall.

Notice that performance measures are not necessarily designed for optimization. In this
sense, they may not guarantee some mathematical properties, such as differentiable and
continuous functions. An example is the BLEU metric used in machine translation. BLEU is a
function combining precision scores and a penalty score [Papineni et al., 2002]. This in turn
makes the metric non-differentiable and discontinuous. In NLP, there are many such evaluation
measures that are ad-hoc for certain tasks. These raise an interesting problem that the loss
function used in training may differ from what we actually use in evaluating the final model.
Thus, one sometimes needs to take into account the discrepancy between the objectives of
training and test.

Another problem with performance measures in NLP is that there might be two or more
“answers” for the same “question”. For example, there are generally multiple good translations
for a source-language sentence. One solution is to take multiple gold-standards into account
when designing a performance measure. BLEU is such a case. It counts the maximum number
of the correct translation segments over all reference translations. The second solution involves
human evaluation. Such a way of evaluation is more accurate but of course is more expensive.
When developing practical systems, practitioners usually train and tune the systems using
automatic measures, and call for human evaluations for the final test.

1.4.4

58 Chapter 1. Foundations of Machine Learning

Significance Tests

Now, assuming you are improving a system in some way, you might be wondering if the
improvement is significant enough or not. All you have is a performance measure. So you
can tell the performance difference between any two points in developing the system, but you
cannot tell if the difference is real or happens by chance.

In this example, you implicitly try to reject or accept a claim that a system is better than
another system (or not). In statistics, significance tests are a method to model this problem.
Suppose we have two systems A and B. And there are a number of datasets on each of
which we evaluate the two systems via the same performance measure. Then, we make two
hypotheses

Hy: System A performs worse than or equally well as system B.

Hy: System A performs better than system B.

where Hj is the null hypothesis, and H; is the alternative hypothesis that is contradictory to
the null hypothesis. By testing these hypotheses, we can claim that system A is significantly
better than system B (i.e., reject Hy and accept H1) or not (i.e., accept Hy and reject Hy).
We probably make errors in the test, for example, incorrectly rejecting a true null hypothesis
(type I error), or incorrectly accepting a false null hypothesis (type II error). The two types
of errors are at odds with each other. A decrease of one may lead to an increase of the other.
Alternatively, we can decrease one while guaranteeing that the other is upper bounded. For
example, we can reduce the type Il error as much as possible, and keep the type I error below
a constant . « is typically called the significance level of a test. It is standard practice to
choose the significance level in the interval [1%,5%]. When conducting statistical testing,
we can obtain the probability of the type I error (call it a p-value). A p-value that is lower
than the significance level can make a rejection of the null hypothesis. For example, in the
above example, with a significance level of 5%, a p-value = 3% means that the improvement
is statistically significant. For more information about the p-value, we refer the reader to other
books on statistics [McClave and Sincich, 2006; Freedman et al., 2007; Freedman, 2009].

Note that the conclusion of significance tests depends on several factors, such as the
number of experiments and the variance in the results of experiments. A problem with
applying significance tests to NLP tasks is that there are often very few datasets for running the
experiments [Dror et al., 2020]. Ideally, we know the true data distribution and can consider
it in the test. This method is called the parametric test. If we cannot find the true data
distribution, then, as a non-parametric test method, we can generate a number of experiments
by sampling over a dataset or adding randomness into the test.

Significance tests are important for drawing convincing conclusions in developing machine
learning systems, although they are often ignored unintentionally. Figure 1.8 shows evaluation
results of three models. Each of them is run for several times with different initial parameters.
While system A is superior to system B in terms of the averaged performance, there are large
variances in their results. The significance test indicates that the difference is not significant.
By contrast, the difference between system A and system C' is significant because their
performance differs greatly enough in most cases. On the other hand, researchers have found

1.5

1.5.1

1.5 NLP Tasks as ML Tasks 59

SyStCl’l’l C . o eemmmmmmmmenesmes 0 0 000 ©
systemB 3 ® ¢ cmsovovanumemmnann ¢ ® ¢ o

System A) ® ®cmoan@umman o om

—_
\\

Performance

Figure 1.8: Performance of three machine learning systems. For each system, there are many
different results because we introduce some randomness into training (e.g., data shuffling,
random starting points, etc). Although it seems that System A outperforms System B, there
is no real distinction between them, because they overlap a lot in the distributions of the
performance (see the bottom of the figure). When comparing System C with System A or B,
the difference in performance is significant because we could accept the H; hypothesis (i.e.,
System C outperforms System A or B) given a large number of experiments.

that there are indeed some thresholds of performance gain to indicate significance under certain
circumstances. For example, we would say that the significance can be roughly indicated by a
certain metric gain if we compare similar systems [Berg-Kirkpatrick et al., 2012].

NLP Tasks as ML Tasks

While there are a wide variety of NLP tasks, many of them can be formulated as the same
machine learning problem. This enables a universal solution to a group of NLP problems
by using a general machine learning approach. Typically, an NLP task can be described as
learning to map language units to some output. Following the notation used in this chapter, we
use x to denote the input feature vector (or matrix) of an NLP task, and use f(x) to denote the
function that is learned to process x. Here are some of the common tasks in NLP.

Classification

Suppose there are a set of classes or labels C'. Each class is represented by a distinct integer in
{1,...,|C|}. A classification model is a function that maps the input x to a |C|-dimensional
vector y, i.e., y = f(x). Each entry of y is a score corresponding to class i, denoted by
y(7). The task here is to assign x to one or more classes having the highest scores. Consider
single-label classification as an example. The prediction is given by the equation

¢ = argmaxy(i) (1.90)
1<i<|C|

where ¢ is the “best” class assigned to x. Sometimes, one needs a probability-like output (see

1.5.2

60 Chapter 1. Foundations of Machine Learning

Section 1.2.1). Let 9(-) be a function that normalizes a vector into a distribution?>. We then
obtain a probabilistic classifier:

y = ¥(f(x)) (1.93)

Classification may be the most common problem in NLP. There are many applications
in addition to categorizing documents into predefined classes. Among them are choosing a
sense for a word [Yarowsky, 1994], determining the polarity of a sentence [Pang et al., 2002],
checking whether two entities should be linked [Krebs et al., 2018], classifying the way of
associating a semantic argument with a verb [Gildea and Jurafsky, 2002], and so on. When
adapting a classification model to these tasks, all you need is to design the form of x and the
set of classes.

Sequence Labeling

An extension to standard classification is to classify a set of samples simultaneously. Sequence
labeling is an example of such a problem. In sequence labeling, the input is a sequence of n
tokens, such as a sequence of n words. A sequence labeling system is required to assign each
input token x () a label (7). Here the boldface in x(4) is used to emphasize that the token
is represented as a feature vector. For convenience, we write x(7) as x; and {(7) as [;. The
function f(-) maps the sequence x; ...x,, into another sequence y; ...y, where y; is the output
vector corresponding to x;. This can be formulated as:

[yl yn} - f([xl xn}) (1.94)

For vector y;, each entry y;(c) corresponds to the prediction score of a class ¢ € C. Note
that f(-) allows for the use of a larger context. For example, one can condition the prediction
y; on the entire input sequence [Lafferty et al., 2001]. The final output of the system can be
defined as the “optimal” label sequence induced from y;...y,. A simple method is to choose
the label sequence that maximizes the sum of the scores over all positions, like this

[l} Zn} - 2rgxlng§z;y(l) (1.95)

A straightforward application of sequence labeling to NLP is to tag each token of the input
sequence, such as part-of-speech tagging (or POS tagging). Furthermore, sequence labeling

22 A similar idea can be found in Eq. (1.48). Given a vector a = [a(1) ... a(n)], the normalization function
has the form:

va) = [sihe - Thiw) (120

Another way is using the Softmax function:

- [expled) —expla(n)
v(a) = [Z;l:ﬁ”‘l’(a(i)) B cxp(a(i))] (1.92)

1.5.3

1.5 NLP Tasks as ML Tasks 61

Tokens : Most are expected to fall below previous- levels
month

POS tags : JJS VBP VBN TO VB IN 1 NNS

Chunk tags : B-NP B-VP L.VP I.VPI-VP BPPP BNP INP O
NP VP PP NP

Figure 1.9: An example of sequence labeling for POS tagging and chunking. The example
is from the training data of the CoNLL 2000 shared task. Each token is labeled with a POS
tag and a chunk tag. A chunk tag has an initial character chosen from {B,I,0}, where B =
beginning of a chunk, I = inside a chunk, and O = outside a chunk. So, a chunk always starts
with a “B” tag, optionally followed by “I” tags. For example, the VP (verb phrase) chunk in
the example spans over the chunk tag sequence “B-VP I-VP [-VP [-VP”.

is able to deal with more complex problems by using labels in a clever way. A well-known
example is the use of the “IOB” label format in identifying chunks spanning multiple tokens
(call it chunking). In this method, “I”, “O” and “B” stand for a token inside a chunk, a token
outside a chunk, and the leftmost token of a chunk [Ramshaw and Marcus, 1995]. As such, a
chunk always starts with a “B** and ends just before the next “B” or a new “O”. See Figure 1.9
for POS tagging and chunking results on an example sentence. As sequence labeling allows
the labeling of both tokens and spans, it has been applied with strong results to many tasks,
including POS tagging [Bahl and Mercer, 1976], chunking [Tjong Kim Sang and Buchholz,
2000], named entity recognition (NER) [Tjong Kim Sang, 2002], and so on.

Language Modeling/Word Prediction

Statistical language modeling (or language modeling for short) is a task of assigning a
probability Pr(w1,...,w,) to a sequence of words wy ...w,,. This joint probability is generally
decomposed into a product of conditional probabilities, by using the chain rule:

Pr(wi,...,w,) = Pr(wy)-Pr(wa|wy)---Pr(wy,|wi,...,w,—1)
= HPr(wi|w1,...,wi,1) (196)
i=1

Eq. (1.96) describes a procedure that generates a word sequence from left to right (call
it auto-regressive generation). Estimating Pr(w;|wy,...,w;_1) is essentially a missing word
prediction problem: we mask out the last word of a sequence and guide the language model to
predict the correct word at that position. See below for a word sequence where the last word is
missing.

Pride and prejudice is one of the best known ___

We can reuse the idea in classification to model the probability distribution Pr(__ |

62 Chapter 1. Foundations of Machine Learning

Pride,and, ..., known). Let x; be the vector representation of w;. We can define a function that
reads x;...x;—1 and produces a vector h;:

hy = f(x1.%io1) (1.97)

where h; is the intermediate states of the word distribution at position ¢. For a sounding
distribution, we normalize h; by some normalization function ¢ (-). Thus, the distribution at
position ¢ would be

yvi = ¢(hy)
= P(f(x1,..,Xi-1)) (1.98)

Obviously, y; (w;) is the probability of w; given previous words, i.e., y; (w;) = Pr(w;|wi, ..., w;—1).
Note that Eq. (1.96) only considers the left context when predicting a word. A natural extension
to this is to condition the prediction on all available context. Consider, for example, a sentence
with a masked word in the middle.

Pride and __ is one of the best-known novels

In this example, we can predict the masked word by using both the left context (Pride and)
and the right context (is one of the best known novels):

Y, = w(f(xl,...7Xi71’xi+17...,Xn)) (199)

This is a bidirectional model, and is commonly used in auto-encoding methods for learning
sequence representation models [Devlin et al., 2019].

1.5.4 Sequence Generation

Sequence generation covers a range of NLP problems, including machine translation, sum-
marization, question answering, dialogue systems, and so on. Usually, it refers to mapping
some data to a sequence. Here we focus on the sequence-to-sequence problem, in that a
source-side sequence is transformed to a target-side sequence, although sequence generation is
not specialized to work with chain structures on the source-side.

For notation convenience, we use boldface variables to denote sequences from now on.
For example, a is a sequence of size n. It can be written as either [al an} Or aj...Gp.
Lets =s;...5, and t = t;...t,, be the sequences to transform from and to. The sequence-to-
sequence problem can be described as finding a target-side sequence that maximizes Pr(t|s):

t = argmaxPr(t|s) (1.100)
t

1.5.5

1.5 NLP Tasks as ML Tasks 63

Like language modeling, Pr(t|s) can be formalized in an auto-regressive fashion:

Pr(tls) = Pr(t1,....tn]s)
= Pr(t1|s)-Pr(ta|s,t1)--- Pr(tys,t1, ..., th—1)

n
= HPr(ti|s,t1,...,ti,1) (1.101)
i=1

Eq. (1.101) differs from Eq. (1.96) only in the additional condition (i.e., s) introduced
to these probabilities. In this sense, we can use Eqs. (1.97-1.98) to solve Pr(t;|s,t1,...,ti—1).
On the other hand, involving s makes the problem more difficult, as we need to model the
cross-sequence relationship between s and ¢;. A recent trend in sequence generation is to
formulate Pr(t;s,t1,...,t;—1) in the encoder-decoder paradigm. There are two steps: an
encoder is first used to represent s as some intermediate form (e.g., a vector), and a decoder is
then used to model both the target-side words and the correlation between the encoder output
and the target-side words. Putting these together, the output of the encoder-decoder model can
be defined to be

yi = Dec(Enc(s),ti,...,t;i—1) (1.102)

where Enc(-) is the encoder, and Dec(-) is the decoder. y; is a distribution of the target-
side word at position 4, i.e., y;(t;) = Pr(¢;|s,1,...,t;—1). Chapter 5 will provide a detailed
description of the encoder-decoder model.

Tree Generation

In NLP, trees are usually used to represent the structures or meanings of sequential data. For
example, a syntactic parser analyzes a sentence to form a syntax tree or parse tree. More
formally, given a sequence of words s = s;...5,,, the parsing problem can be defined as:

d = argmaxPr(d|s) (1.103)
deD

where d is a parse tree, and D is the set of all parse trees yielding s; ...s,,. Computing Pr(d|s) is
challenging, as the modeling complexity increases exponentially when moving from sequences
to trees. In statistical parsing, a solution is to model d as a derivation of syntactic rules. In
this way, Pr(d|s) can be formulated as a product of rule probabilities. Figure 1.10 presents
an example of parsing with context-free grammar (CFG) rules. Alternatively, Pr(d|s) can be
modeled in an end-to-end manner. For example, some recent approaches perform parsing by
defining a neural network over the parse tree. The probability of a sub-tree rooting at a node is
computed by considering the interaction between this node and child nodes.

Another idea is to frame parsing as sequence generation. For example, one can linearize a
parse tree and represent it as a sequence of words and syntactic labels, or transform the tree
generation process as a sequence of actions. This allows the use of sequence-to-sequence
techniques in addressing a sequence-to-tree problem.

1.5.6

64 Chapter 1. Foundations of Machine Learning

Parse Tree: CFG Rules:
S ri: PRP — He
NP%VP\ ro: VBD — declined
| T | r3: TO — to
PRP VBD S r4: VB — elaborate
‘ ‘ ‘ rs . — .
He declined VP . r¢: NP — PRP
N r7: VP — VB
TO VP rg: VP — TO VP
t‘o V‘B rg: S — VP

rio: VP — VBD S

‘ 711 - S — NP VP .

elaborate

P(d|s) =P(PRP — He) - P(VBD — declined) - P(TO — to) - P(VB — elaborate)-
P(.—.)-P(NP — PRP).P(VP — VB)-P(VP — TO VP)-P(S — VP).
P(VP — VBDS)-P(S — NP VP .)

= Hilio P(rq)

Figure 1.10: An example parse tree and CFG rules. The sentence is from the training data of
the CoNLL 2000 shared task. The parse tree is represented as a derivation of CFG rules. The
probability of the parse tree is defined as the product of rule probabilities.

In linguistics and NLP, tree structures are in heavy use for syntactic analysis. In addition
to parsing sentences, they are also attributed to words, phrases, and discourses. On the other
hand, trees are not the only way of visualizing complex non-linear structures. A more general
concept is a graph. While trees can be thought of as special graphs, there are cases that trees
cannot handle [Fellbaum, 2005; Singhal, 2005; Banarescu et al., 2013]. For example, in the
semantic representation of a sentence, we often need a graph to connect verbs and arguments.
While learning general graphs is harder than parsing a sentence into a tree, we can reuse many
of the methods developed in sequence and tree generation.

Relevance Modeling

Generally speaking, relevance is referred to as how well a thing relates to another. The concept
of relevance is used in many different sub-fields of NLP and information science. For example,
in information retrieval, relevance is used to describe to what extent a retrieved document
meets the query. Additional uses of this concept can be found in question answering, dialogue
systems, semantic analysis, and all other tasks that require a matching or retrieval process.

Let us consider a more general description. Assume that we have a query query and a key
key that represents something we intend to match with query. Then, we define the feature

1.5.7

1.5 NLP Tasks as ML Tasks 65

vectors of query and key as

a = Q(query) (1.104)
k = K(key) (1.105)

Q(-) and K (-) are feature extractors. The relevance between query and key is given by the
function:

ro= flak (1.106)

f(+) could be on one hand simply a distance measure if q and k are in the same vector space,
and on the other hand a more complex model that performs some non-linear transformations.
In fact, the way of defining relevance can be adopted in several different scenarios. Sometimes,
relevance is also termed as similarity or correlation. A general example is how similar two
objects are. Let x and y be two samples (say two words). The similarity of z and y is given by

ro= f(g(x),9(y)) (1.107)

where ¢g(-) is a feature extractor, and f(-) is a similarity function. Learning both ¢(-) and
f(-) is called similarity learning. In one setup of similarity learning, we fix f(-) and learn
g(-) in a way that similar samples exhibit similar outputs of g(-). The learning of the feature
extractor is not even required to work with the similarity function. For example, for obtaining
the similarity between words, we can learn g(-) in a language model and use it together with
various similarity functions. This puts the problem in a larger topic of machine learning: the
learning of a sub-model is independent of the problem where we use it. Such an idea is widely
adopted in pre-training, advancing the recent state-of-the-art on many NLP tasks.

In another setup of similarity learning, we can learn f(-) directly. This can be performed by
either jointly learning f(-) and g(-), or learning f(-) on top of fixed g(-). The problem is also
related to metric learning. Typically, metric learning is framed as a supervised problem [Kulis,
2013]. A desired similarity function could be learned with the supervision regarding some
gold-standard similarity. However, in practice there is usually no such supervised information
in NLP. In this case, one could take relative distance as some supervision. For example, the
similarity function can be learned by optimizing a contrastive loss (see Section 1.3.4).

Measuring the similarity between objects plays an important role in many machine learning
methods, such as clustering and nearest neighbor classification. On the side of NLP, it is
useful for exploring the relationship between words, phrases, sentences, and documents, e.g.,
similarity is a way to examine how word vectors correspond to our understanding of word
meanings [Mikolov et al., 2013c; Pennington et al., 2014].

Linguistic Alignment

Linguistic alignment is a set of problems where we establish some correspondence between
two sets of linguistic units. In NLP, the sequence-to-sequence and sequence-to-tree problems
are typically linguistic alignment problems, as they both connect two linguistic units. However,

66 Chapter 1. Foundations of Machine Learning

by convention, the term alignment is referred to as aligning multiple objects simultaneously>’.

As an example, consider the well-known word alignment task: we align the words of
a sentence to the words of another sentence. We reuse the notation in Section 1.5.4 as both
the sequence-to-sequence and word alignment tasks perform on a pair of sequences. Given a
source-side word sequence s = s;...S,,, and a target-side word sequence t = ¢;...t,,, the word
alignment between the two sequences is denoted as an m x n matrix A. A(4,7) = 1 if there is
an alignment link between s; and ¢;, and A(7,j) = 0 otherwise. The optimal alignment can
be defined as:

~

A = argmaxPr(Als,t) (1.108)
A

where Pr(Als,t) is the word alignment probability. Like in other machine learning problems,
we can model Pr(Als,t) in either a generative or discriminative manner (see Section 1.2.4).
For example, in Brown et al. [1993]’s work, the word alignment model is factored into several
generative steps, each accounting for some assumptions about the problem?*.

A 0-1 alignment matrix indicates a hard way of word alignment. A problem here is that
the hard model may not describe well the highly ambiguous word alignments. We therefore
can represent A as a real-valued matrix (call it a soft word alignment matrix or a word
alignment weight matrix). Assume that the source-side words are represented as a sequence

of feature vectors x = [xl xm}. Likewise, the target-side words are represented as
y= {yl yn] . A soft word alignment model is given by:
A = af(s,t) (1.109)

where a(-) is an word alignment function that computes the alignment weight A(4, j) for each
pair of x; and y;. In fact, all the methods discussed in Section 1.5.6 are applicable to the
design of a(-). This somehow links the modeling of word alignment with the modeling of
similarity, and makes it possible to address different NLP problems by using the same machine
learning approach.

Eq. (1.109) offers a very general way to discover the underlying connection over pairs
of variables. In addition to aligning words in sequences, it is useful for aligning unordered
objects. For example, in bilingual dictionary induction, we can learn such a weight matrix to
estimate how strong a word in one language corresponds to a word in another language.

Here is another note on linguistic alignment models. While linguistic alignment could
be thought of as an independent NLP task, it is commonly used in designing sub-models
of some downstream systems. Many systems that model word-level relationships involve
implicit representation of linguistic alignment. As a consequence, linguistic alignment is
treated as some latent states, and is a by-product of these systems. For example, in the early

23The concept of alignment is wide-ranging. We use the term linguistic alignment here to differentiate it from
the alignment of large language models discussed in subsequent chapters.

24More precisely, Brown et al. [1993] model Pr(A,s|t) which is a surrogate of Pr(Als,t), as Pr(Als,t) =
Pr(A,s|t) _ Pr(A,s|t)

Pr(s[t) > A/ Pr(A’.s[t)

1.5.8

1.5.9

1.5 NLP Tasks as ML Tasks 67

age of statistical machine translation, word alignment is a hidden variable used in modeling
the mapping between sequences. The word alignment result can be easily induced from a
machine translation model. More recently, neural sequence-to-sequence models — most
notably attentional models [Bahdanau et al., 2014] — have attempted to do something similar
to word alignment by computing attention weights among words.

Extraction

In NLP, extraction is not a kind of task but a kind of behavior that a system exhibits. Informally,
it denotes a process of gathering, distilling structured information from some information
sources. So, the term extraction generally appears together with other terms to form a specific
task, such as keyword extraction, event extraction, and relation extraction. Many of these
tasks can be categorized into an area — information extraction. Information extraction is
perhaps the broadest topic in NLP. There is even no exhaustive list of information extraction
tasks. According to Jurafsky and Martin [2008]’s book, it includes but is not limited to named
entity recognition, reference resolution, relation extraction, event extraction, template filling,
and so on.

However, since information extraction is a “miscellany” of many different problems,
it cannot be formulated as a single machine learning problem. Fortunately, most of these
problems can be framed as standard machine learning problems, such as classification and
sequence labeling, and can be solved by using the off-the-shelf tools. In some cases, it may
require a slight update of existing models for adaptation to a new task. For example, extracting
a specific segment from text may require the system to produce a span that indicates the
beginning and ending positions of the extracted segment (call it span prediction).

On the practical side, machine learning is not always necessary in extracting information
from text. Many problems can be solved by using hand-crafted rules. An example is using
regular expressions to identify locations and dates in text. In practice real-world systems are
usually combinations of heuristic methods and automatic machine learning methods.

Others

Figure 1.11 shows illustrative examples of the above NLP tasks. Note that many of the
discussions here are still preliminary and incomplete. For example, we only talked about NLP
problems in the supervised learning paradigm. Many unsupervised tasks are important for
NLP research as well. For example, it is common to cluster unlabeled words or documents to
ease the processing in downstream systems. Several methods are directly applicable to this
task [Murphy, 2012]. A recent trend in NLP is that it is not necessary to set a strict boundary
between the use of supervised learning and the use of unsupervised learning. In many cases,
unsupervised methods help supervised tasks, and vice versa. A notable example is that we
learn a pre-trained feature extractor on unlabeled data and build a supervised classifier on top
of it. This leads to another trend running towards improving representation models (i.e., feature
extractors) without the need of accessing downstream supervised tasks.

1.6

68 Chapter 1. Foundations of Machine Learning

Summary

This chapter has given the basic ideas of machine learning and its applications to NLP problems.
In particular, we have presented a simple text classification problem to get started with machine
learning. Also, we have discussed several general problems on machine learning, e.g., types of
machine learning methods, inductive biases, loss functions, overfitting and so on. They are
followed by a discussion on model selection and assessment. In addition, we have described
how model NLP problems are framed as machine learning problems.

However, machine learning is a huge research field. There are several interesting topics we
left out. One topic that we said little about is reinforcement learning. In general, reinforcement
learning is very powerful. It should be and has been considered as an approach to addressing
NLP problems, e.g., training a sequence-to-sequence by using a risk-based loss function. A
reinforcement learning textbook will offer the general ideas of reinforcement learning [Sutton
and Barto, 2018]. Another topic we missed here is Bayesian learning [Gelman et al., 2020;
McElreath, 2020; Downey, 2021]. It opens up a notable strand of research in statistical learning,
and has been successfully used in NLP tasks. Moreover, there are many other topics that are
specialized in certain aspects of machine learning and are of interest to NLP researchers and
engineers. Some of them are efficient machine learning [Tay et al., 2020b], multi-task learning
[Zhang and Yang, 2021], few-shot/zero-shot learning [Wang et al., 2019b; 2020c], and so on.

A final point to wrap up this chapter. We skip the detailed discussion on certain machine
learning models and algorithms, such as classification and regression models, because the
reader interested in them can find several excellent, comprehensive introductions [Bishop,
2006; Hastie et al., 2009; Murphy, 2012; Mohri et al., 2018]. In the next chapter we will
discuss a bit more about artificial neural networks which are the basis of deep learning and
recent state-of-the-art NLP models.

1.6 Summary

69

class ¢

--.*l--

Classifier f(x)

T

[Sample x (feature vector)]

quence Labeler
[Xl xn])

(a) Classification (b) Sequence Labeling
f_/ f_/
e B o B m_Ew_
T T
Language Model Encoder Decoder
Pr(wi|w1,...,wi,1) EHC(S) Dec(Enc,t1...t;—1)
T ++ 1T+ 7 T+t T+ 71
(c) Language Modeling (d) Sequence Generation (seq2seq)
S 4+
T Similarity Func. f(q,k)
Parser Al VI
Pr(d|s) ‘ < T 1
NNS VBD NN | a = Q(query) | | k = K(key) |

g Y Y
S1 S92 s3

(e) Tree Generation (seq2tree)

t1 t2 t3
4 4 J

] H n S1

Aligner
a(;g 9 — O s
’] m s3

T T 7

(g) Linguistic Alignment

T T

(f) Relevance Modeling

span = (2,4]

T

Extractor

Extracte everything needed, e.g., a segment

Nt ¢

(h) Extraction

Figure 1.11: Natural language processing tasks from a machine learning perspective.

2.1

2.1.1

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 2

Foundations of Neural Networks

Artificial neural networks (or neural networks, or neural nets for short) are powerful
machine learning tools that have advanced the previous state-of-the-art in NLP in recent years.
However, although the history of neural networks can be traced back to the 1940s [McCulloch
and Pitts, 1943], for quite a long time neural networks have not been found to consistently
outperform other machine learning counterparts. The change began around 2006 when “new”
ideas were developed to learn deep neural networks [Hinton et al., 2006; Hinton, 2007]. Such
methods have since been known as deep learning. To date, deep learning has no doubt become
one of the most active, influential areas in artificial intelligence, while it has received benefits
from not only “deep” model architectures but also many, many techniques which help to learn
and use such models.

In this chapter, we will present the basic ideas of neural networks and deep learning.
The chapter is not cutting-edge but covers several important concepts and techniques that
are widely used in implementing neural systems. This includes basic model architectures of
neural networks, training and regularization methods, unsupervised learning methods, and
auto-encoders. We will also present an example of using neural networks to solve the language
modeling problem.

Multi-layer Neural Networks

To get started, we give a quick introduction to single-layer perceptrons, and extend them to a
more general case where multiple neural networks are stacked to form a more complex one.

Single-layer Perceptrons

Single-layer perceptrons (or perceptrons for short) may be the simplest neural networks that
have been developed for practical uses [Rosenblatt, 1957; Minsky and Papert, 1969]. Often, it
is thought of as a biologically-inspired program that transforms some input to some output.
A perceptron comprises a number of neurons connecting with input and output variables.
Figure 2.1 shows a perceptron where there is only one neuron. In this example, there are two
real-valued variables x; and x5 for input and a binary variable y for output. The neuron reads

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

72 Chapter 2. Foundations of Neural Networks

1 z1-wi+z9-we+b>0
w2

0 otherwise
T2 1

b

Y
T -] neuron:

w1
1

x

Figure 2.1: A perceptron with two input variables {1, 22} and an output variable y. There are
two weights {w1,ws}, each corresponding to an input variable. The output depends on the
sum of the weighted input variables and the bias term b, say, y = 1 if x1 - w1 +x2-wa+b > 0,
and y = 0 otherwise.

the input variables and determines which output value is chosen. This procedure is like what a
biological neuron does — it receives electrochemical inputs from other neurons and determines
if the electrochemical signal is passed along.

In a mathematical sense, a perceptron can be described as a mapping function. Let x be a
vector of input variables (i.e., a feature vector). An affine transformation of x is given by':

fx) = x-w+b
= in'wi+b 2.1

where w is a weight vector and b is a bias term. Then, a standard perceptron can be defined to
be:

y = ¥(f(x))
_ 1 f(x)>0 22)
0 otherwise

where () is a binary step function. Another name for /(-) is activation function. This links
the perceptron to the classification models discussed in Section 1. In other words, Eq. (2.2)
is a classifier itself: ¢ (+) is a discriminate function defined on each input x, followed by an
activation function 1/(-) used for producing a desirable output.

In case there are two or more neurons, we can group these neurons into a layer. As shown
in Figure 2.2, all the neurons in a layer receive signals from the same input feature vector but
are weighted in different ways. The output of the layer is a new feature vector, each entry of

'In mathematics, a linear transformation maps each vector v in a space to f(v) in another space, satisfying
for any vectors x and y, and scalars « and 3, we have f(ax+ 8y) = af(x)+ Bf(y). An affine transformation is
a linear transformation followed by a translation, often written in the form f(x) + b.

2Since the step function is a linear combination of indicator functions, the perceptron is a linear classifier.

2.1.2

2.1 Multi-layer Neural Networks 73

n Y2 Y3 Ya

W1
T T T T y X w1l Wiz w13 Wi4

.'} Y1 Y2 Y3 Ya = 'lp(1 z2 >< w21 W22 W23 W24

by
—1—‘1 xblbzbsb4>

T T2 1

Figure 2.2: A single-layer perceptron involving four neurons. All these neurons receive
information from the input variables {x1,z2}. The perceptron describes a process in that 1)
we first transform the input vector of variables by an affine transformation f(x) = x-w+b;
2) and then compute the output by feeding f(x) into the activation function ().

which corresponds to a neuron. More formally, taking () and f(-) as vector functions, the
mathematical form of the single-layer perceptron is given by the equations:

y = ¥(f(x) (2.3)
f(x) = x-w+b (2.4)

where x € R™, y € R", w € R™*"™ and b € R".

Another note on the activation function. The step function, though extensively used, is not
the only form of the activation function. There are many different ways to perform activation.
For example, we can use the Softmax function if we want a probability distribution-like output;
we can use the Sigmoid function if we want a monotonic, continuous, easy-to-optimize output;
we can use the ReLU function if we want a ramp-shaped output. Table 2.1 shows several
commonly used activation functions. Note that, although a layer of neurons equipped with
these activations can be loosely called a single-layer perceptron, it can be categorized as a
more general concept, called a single-layer neural network. If not specified otherwise, we
will use the term single-layer neural network throughout this document.

Stacking Multiple Layers

A next obvious step is to create a neural network comprising multiple layers. To do this, all we
need is to stack multiple single-layer neural networks to form a multi-layer neural network.
See Figure 2.3 for an example. In this multi-layer neural network, the output of every neuron
of a layer is connected to all neurons of the following layer. So the network is fully connected.
Essentially, a multi-layer neural network describes a composition of functions. For example,
we can formulate the neural network in Figure 2.3 as a function yielded by composing a few
simple functions:

y = Softmax(Sigmoid(ReLU(x-wi)-w2)-ws+bs) (2.5)

74

Chapter 2. Foundations of Neural Networks

Name | Formula (for entry ¢ of a vector)
Identity | y; = s;
. 1 s,>0
Binary Ste ;=
yStep | yi { 0 s <0
Hyperbolic Tangent | y; = exp(s;) — exp(=si)
exp(s;) +exp(—s;)
1 si>1
Hard Tangent | y; =¢s; —-1<s;<1
-1 s<-—1
1
Si id (Logisti = —
1igmoid (Logistic) | y; T+ exp(—s))
i 5i>0
ReLU (Rectified Linear Unit) | y; = 4 @ >
0 Si S 0
Softplus | y; = In(1+ exp(s;))
1)2
Gaussian | y; = exp (— — - M)
2 o;
exp(s;)
Softmax | ¥ = =————
b ioexp(sy)
Maxout | y; = max(sy,...,Sp)

Table 2.1: Activation functions (y = ¢ (s), where s,y € R™). All these functions are vector
functions. We show formulas for entry i of the input and output vectors. j; and o are the
mean and variance respectively.

where wi € R3*4, wy € R¥3, w3 € R3*3, and b3 € R? are parameters.

Usually, the depth of a neural network is measured in terms of the number of layers. It is
called model depth sometimes. For example, taking the input vector as an additional layer,
the depth of the example network in Figure 2.3 is 4. A related concept is model width, which
is typically defined on a layer, rather than on the entire network. A common measure for the
width of a layer is the number of neurons in the layer. For example, the width of the output
layer in Figure 2.3 is 3. If all layers of a neural network are of the same width n, then we
can simply say that the model width is n. Both model depth and model width have important
implications for the properties of the resulting neural network. For example, it has been proven
that even a neural network with two layers of neurons and the Sigmoid activation function can
compute any function [Cybenko, 1989]. For stronger systems, promising improvements are
generally favorable when deepening neural networks.

Stacking layers results in a very common kind of neural network — feed-forward neural
networks (FFNNs). These networks are called “feed-forward” because there are no cycles in
connections between layers and all the data moves in one direction. We will see in this book
that most of today’s neural networks are feed-forward. A few exceptions will be presented in
Section 2.3.

2.1.3

2.1 Multi-layer Neural Networks 75

C ox —Softmax(53] x
1 Layer 3 (Output)
by
e + @ x [)

Layer 0 (Input)

Figure 2.3: A multi-layer neural network. The input layer consists of three variables
{x1,x9,23}. These variables are fully connected to all neurons of layer 1. The output
of layer 1 is a new vector hy = ReLU(x-w?1). It is then fully connected to layer 2, performing
the mapping hy = Sigmoid(h; - wy). Its output hy is fed into layer 3, which generates the
final output y = Softmax(hy - w3 + bs). The parameters of this neural network are wq, wo,
w3 and bs.

Computation Graphs

Computation graphs are a common way of representing neural networks. As graphs in
mathematics, a computation graph is made up of nodes and edges between nodes. Each node
represents either a mathematical operation or a variable, and each edge represents the data flow
from one node to another. So computation graphs are directed’. Consider, for example, three

3While a number of machine learning models can be represented as undirected computation graphs, they are
not the focus of this document.

76 Chapter 2. Foundations of Neural Networks

functions:
y = X+WwW (2.6)
y = Softmax(x-w+b) 2.7)
y = Sigmoid(x-wi+b;)—ReLU(x-w3) (2.8)

Figure 2.4 shows the computation graphs of these functions. From the parsing point of view, all
neural networks can be viewed as mathematical expressions. A computation graph is therefore
the representation of the result when parsing a mathematical expression. In this way, each node
of the graph yields a sub-expression, and the root node yields the whole expression.

In a computation graph, a node can be connected to multiple nodes beneath it and/or above
it. This enables the reuse of sub-graphs in representing complex functions. For example, in Eq.
(2.8), the variable x is used twice and the corresponding node has two outgoing edges. In fact,
organizing neural networks into computation graphs resembles the compositional nature of
neural networks — typically, a large network is built by composing small networks. Take Eq.
(2.8) as an instance. It can be rewritten as a system of three equations:

y = h1 — hQ (29)
h; = Sigmoid(x-wj+bq) (2.10)
hy = ReLU(x-ws) @.11)

In the composition operation, the nodes of h; and hy in Eq (2.9) are replaced by the graphs of
Egs. (2.10-2.11).

The main use of computation graphs is in executing the function. This is exactly the same
thing as predicting the output of a neural network. The method is quite simple. First, the
nodes of the graph are topologically sorted such that they are placed in an order consistent
with the information flow. Then, given the values that are fed into the input nodes, the graph is
traversed in a way that we compute the output of each node and flush it to its parent nodes.
The final result is got out of the output node. This procedure is typically called a forward pass.
A forward pass can be efficient, as every node only needs to be visited once and its output can
be reused by multiple nodes without the need of recomputing the result. Moreover, a forward
pass can be optimized by reconstructing the graph. This can develop the reuse idea a bit more
and avoid unnecessary computation and memory consumption.

Another use of computation graphs is to compute gradients automatically. In training
neural networks, it is in general required the partial derivatives of the loss function L with
respect to every weight matrix (w) and every bias term (b), say gTLv and g—ﬁ. Before seeing how
these partial derivatives are used in updating a model (see Section 2.4.1), though, we first give
an idea of computing derivatives in a computation graph. For example, consider the function
below:

y = ¢(x-wi+by) - wy (2.12)

2.1 Multi-layer Neural Networks 77

_):<

y
A / \
Soft. Sigm| ReLUl

L PG
T /\ /\

<

by
W1 X W9
@Qy=x+w (b) y = Softmax(x-w+b) (¢) y = Sigmoid(x-w; +by)—
ReLU(x-w3)

Figure 2.4: Computation graphs of three example neural networks. The black boxes represent
the mathematical operations, and the colored boxes represent the variables. A mathematical
operation node has incoming edges from other nodes, and each of these nodes can be treated as
an argument of the operation. For example, in sub-figure (a), the addition node has two child
nodes labeled with x and w respectively. This node reads the output of the nodes x and w, and
generates the output y = x +w. Things are a bit interesting for larger graphs. In sub-graph (b),
the output of the dot node (i.e., x - w) is passed along the edge to the addition node. Then, the
addition node computes the sum of x - w and b as its output. We can repeat the same process
over all the mathematical operation nodes in a bottom-up manner, and get the final result of
computing the whole expression out of the top-most node.

To obtain aaL , gti and , it is natural to use the chain rule of differentiation. For

example, for a composite functlon y = p(q(x)), the formula of the chain rule is given as:

dy _Op 9q
dr dq Ox 213

But the analytic formula of a derivative based on Eq. (2.13) would make a lengthy equation.

2.2

78 Chapter 2. Foundations of Neural Networks

Instead, we can decompose a complex function into several functions, each standing for some
operation. Then, Eq. (2.12) can be rewritten as:

y hy -wy (2.14)
hy = ¢(hs) (2.15)
hy = hs+b; (2.16)
h; = x-w; (2.17)

All these variables can be understood in a better way from a computation graph: each
variable is a node of the graph, and nodes are connected by algebraic operations and function
compositions. Taking Eq. (2.13) and some basic knowledge of calculus, we compute the
derivatives of the variables, like these:

node 1: gi = Jy (2.18)
node 2: ghI; = g—L 2T (2.19)
node 3: (,fWLQ = hi. ‘;ﬁ (2.20)
node 4: é(?th = g}i o' (h) (2.21)
node 5: g}i} = 5111;2 (2.22)
node 6: gli = g}i (2.23)
node 7: g—i = g}i Wi (2.24)
node 8: 8av€1 = T 8853 (2.25)

where d,, is the derivative of the loss with respect to the model output. J, depends on the
choice of the loss function, e.g., if we use the squared loss L = %(y — ygold)z, where ygo1q 18
the benchmark, then dy = y — y401q. The above process is essentially a backward pass, as the
gradients are passed in a top-down fashion. Another name for this is error-propagation. It
has been the de facto standard for training deep neural networks. For a better understanding of
how forward and backward passes work, Figure 2.5 shows two running examples.

Example: Neural Language Modeling

Language modeling is a well-known NLP task that estimates a probability distribution over
sequences of words. Given a sequence of m words w;...w,, the probability Pr(w,...,wy,) is

2.2 Example: Neural Language Modeling 79

(1] y (Output) (1) Loss L
T ; !
Jy
(5] (s ~
y=h;-wy y=h;-wy
/\ T B R
2 3 2 \Z &
h; = ¢ (hy) hy =9 (hy) [¢(-)
A[s = 3 O¥'(B)
4 4 l
h2:h3+b1 h2:h3+b1
/\ OL __ JL/ \z)L __ 0L
®h; ~ Oh, 0b; _ Ohs
6 ¢ XI
h3X'W1E] b1 h3:X W1

8L _ OL T 9L _ T . 0L
/\\ ox — ®h; Wi owi — X ' Bhs

(a) Forward Pass (b) Backward Pass

Figure 2.5: The forward pass and backward pass for an example computation graph. In the
forward pass (left), the nodes are visited in an order from the input to the output, say, from node
8 to 1. On each node, we execute the corresponding function, such as addition, to generate the
output, which is then consumed by the subsequent nodes. In contrast, in the backward pass
(right), the nodes are visited in the reverse order, say, from node 1 to 8. During this process, we
pass the gradient of the loss (or error) from the output to the input, that is, for each node, we
compute the gradient at the input point of the node by using the chain rule, given the gradient
at the output point of the node.

given by the equation:

m

Pr(wy,...,wn) = HPr(wi|w1,...,wi,1) (2.26)
i=1

As such, the language modeling problem is framed as predicting the next word given all
previous context words. A simple method of modeling Pr(w;|wy,...,w;—1) is to condition the

80 Chapter 2. Foundations of Neural Networks

prediction on a context window that covers at most a certain number of words, like this:

Pr(w;i|wi,...;wi—1) =~ Pr(wi|wi—pnt1,...,wi—1) (2.27)

where n is the window size. One way to estimate the probability is the n-gram language

modeling approach: we compute the relative frequency for each n-gram w;_,41...w;, i.e.,
count(w; —pn41...w;)
count(w; —p41...w;i—1)

nated the NLP field for a long time, they usually require huge tables for recording all those

Pr(w;|wi—p+t1,...,wi—1) = . While n-gram language models have domi-
n-gram probabilities. In consequence, the models will be very sparse if more and more texts
are used in training such models. This is also known as a kind of the curse of dimensionality.

Here we consider neural networks in addressing the language modeling problem [Bengio
et al., 2000; 2003b]. Unlike n-gram language models, neural language models do not
generalize in a discrete space that requires an exponentially large number of distinct feature
vectors as more words and a large context are involved, but in a continuous space that encodes
words via dense, low-dimensional real vectors. In particular, a feed-forward network is utilized
here to predict how likely w; occurs given w;_n41...w;—1.

Figure 2.6 presents the architecture of the feed-forward neural network based language
model (FFNNLM). The input is the context words w;_,+1...w;—1. Each is a discrete variable
choosing values from a vocabulary V. Since the neural network operates on vectors, all words
are vectorized as one-hot representations. In this case, the word w = V} is a |V'|-dimensional
vector in which entry £ is 1 and other entries are all 0. For example, consider a vocabulary
V ={“T",“you”,“he”,“’she”, “they”}. The one-hot representation of “you” is

wlyou™) = [0 1 0 0 0} (2.28)

While the one-hot vectors make word representations distinguishable, it may not appear
that we can gain too much by this because such representations cannot describe the closeness
between words, e.g., similar words should tend to be close in the vector space. If we relax the
indicator-based representations to real-valued representations, then it turns out that we can
obtain some word relationship by computing similarities between these vectors. To this end,
an effective technique is to transform one-hot representations to distributed representations.
More formally, let x be a one-hot vector of a word w. The distributed representation of the
word is a real-valued vector, given by:

e = x-C (2.29)

where the representation e is a vector € R%, and d, is the number of dimensions of the
representation. Each dimension of e can be viewed as some countable aspect of the word,
though it is not required to be interpreted by linguistics. C is a |V| x d, matrix, of which the
k-th row corresponds to the vector for V. Hence, w - C is to “select” a row from C. For

2.2 Example: Neural Language Modeling 81

Pr(- |wy,ws,ws)

T

Output Layer y = Softmax(h; - Wy + Bs)
(Layer 3)
h1’ 0 9 6 .6 71‘
Hidden Layer h; = TanH(hy- W, +B))
(Layer 2)

el--

Embedding Layer | o —x,.C ey =x%5-C e3=x3-C
(Layer 1) T T T
’0100”0001”1000‘
x1 (wy) x2 (w2) x3 (w3)

Figure 2.6: A neural language model [Bengio et al., 2003b]. Blue boxes represent the layers
of the neural network. The input is three context words in their one-hot representations
{x1,%2,X3}, and the output is the probability distribution of the next word Pr(w4|w1,wa,ws).
First, an embedding layer is used to map each word into the distributed representation (i.e., the
word embedding). The embeddings of these words are concatenated to form a bigger vector
hg such that the concatenated vector encodes all input information. Then, hy is taken as the
input to a normal layer that performs the mapping h; = TanH(hy- W + By). The final layer
reads h; and produces a distribution over the vocabulary, i.e., y = Softmax(h; - W3+ By)
where yi, = Pr(Vi|wi,wa,ws).

example, given C € R5*3, the distributed representation of “you” is given by:
e(“you”) — w(“you”) . C
12 0.5 18

- [01000}.370.7 28
61 04 23

- [12 0.5 18] (2.30)

82 Chapter 2. Foundations of Neural Networks

Eq. (2.29) implies an idea of learning to represent words, leading to a big development
of NLP. Typically, the vector e is called the word embedding, and the parameter matrix
C is called the embedding matrix. A number of methods may be used for learning word
embeddings, though we will tend to not focus on such methods in this chapter. The reader can
refer to Chapter 3 for a more detailed discussion on this topic.

To encode the context words {w;—ynt1,...,w; } (or {X;—n+1,...,X;}), a simple method is to
concatenate the word embeddings {€;_,11,...,€;—1} as a new vector hg:

hy = [ei—nt1,...,€i-1]

The next part of the model is a 2-layer feed-forward neural network. The first layer, called
a hidden layer, is a standard layer of neurons, followed by the hyperbolic tangent activation
function. The layer produces a dj,-dimensional vector:

h, = TaHH(ho-Wl—l-Bl) (2.31)

The second layer is the output layer. It produces a distribution over V. This can be formulated
as:

Pr(. |’U)i,n+1, ...,wifl) = Softmax(h1 - Wy + Bg) (2.32)

The parameters of the model are C € RIVIxde W, ¢ R(r—Ddexdn B, € Rin, W, €
R%*IVI and By € RIVI. A popular way to optimize these parameters is to minimize the cross-
entropy loss via gradient descent. Additionally, training can be improved via regularization.
These methods will be discussed in Sections 2.4 and 2.5.

A few remarks on the neural language model. First, by using distributed feature vectors,
“senses” can be shared in part by different words. This enables learnable word senses by which
the similarity between words is implicitly considered. An advantage of such a model is that
a small change in word vectors would not lead to a big change in the result. For example,
suppose we have seen “grapes are fruits” many times but have never seen “peaches are fruits”.
If “grapes” and “peaches” are close in the vector space, then we would say that n-grams
“grapes are fruits” and “peaches are fruits” are something similar. This differentiates neural
language models greatly from n-gram language models in which different surface forms mean
different meanings.

Second, the dense representation of words makes a smaller model. For example, a common
setting of d. and dj, is less than 1000, making the number of parameters under control. By
contrast, the size of an n-gram language model increases by a factor of |V'| as n increases. For
example, there will be a huge table of probabilities for a common vocabulary if n is larger than
3.

Third, the neural language model is computationally expensive because of the heavy use of
vector and matrix operations, such as matrix multiplication. This is a common problem with
most of deep neural network-based systems. A common solution is to break the computation
problem into independent sub-problems so that these sub-problems can be handled in parallel.

2.3

2.3.1

2.3 Basic Model Architectures 83

At a lower level, one can use GPUs or other parallel computing devices to speed up linear
algebra operators. At a higher level, one can distribute parts of the model or parts of the data to
multiple devices for model-level or task-level speed-ups.

Basic Model Architectures

We now describe, in more detail, several basic building blocks for neural networks. They are
widely used in developing state-of-the-art neural models in NLP.

Recurrent Units

Recurrent neural networks (RNNs) are a class of neural networks that read and/or produce
sequential data or time series data. As with a feed-forward neural network, an RNN comprises
layers of neurons and connections between neurons [Hopfield, 1984; Rumelhart et al., 1986;
Williams and Zipser, 1989; Elman, 1990]. Some of the neurons are used as a “memory” that
keeps the state of the problem when the processing moves on along a sequence of signals.
As aresult, it is straightforward to use RNNs to deal with variable length problems, such as
machine translation and speech recognition.

The main idea behind RNNss is to repeatedly utilize a recurrent unit (or recurrent cell)
to compute the output at each position of an input sequence. To be more precise, given a
sequence of vectors X ...X;,, a standard recurrent unit can be described as a function RNN(-)
that consumes an input x; and a state s;_ at each time and generates a new state s;, like this:

S; = RNN(Si_l,Xi) (233)

The state s; can be viewed as a “memory” that summaries the past data, and would be updated
when the new data comes. See Figure 2.7 (a) for visualization of Eq. (2.33). The circle here
indicates the reuse of the recurrent unit. This can be understood by rewriting Eq. (2.33) in a
sequence of calls of the function RNN(-):

RNN(SZ'_l 5 Xl‘) = RNN(RNN(SZ_Q, Xi—l)a Xi)
RNN(RNN(RNN(Sl_g, Xi_g),Xi_1)7Xi)

== RNN(RNN((RNN(So,Xl),Xg) Xifl),Xi) (234)

Figure 2.7 (b) shows the structure of this network. This is sometimes referred to as an
unrolled (or unfolded) structure of RNNs. Basically, Figures 2.7 (a) and (b) are the same
thing. While a rolled RNN has a simple and well-explained form, an unrolled RNN is more
suitable for visualizing the data flow through the network. So, we will use the unrolled version
of RNNs throughout this document. Moreover, it is worth noting that an unrolled RNN is in
fact a deep feed-forward neural network. For example, each use of the recurrent unit creates a
“layer” that receives information from a previous “layer”. In this sense, an RNN is a stack of

84 Chapter 2. Foundations of Neural Networks

S; Si—1 S; Si+1

=L EBEE

[[

X Xi—1 Xi Xi+1

(a) An RNN unit (b) Unrolling the RNN

Figure 2.7: Example of RNN (rolled vs unrolled). An RNN unit reads the input at each time
step ¢ and the output at the last time step ¢ — 1, and produces a new output s;. As such we can
reuse the same RNN unit to make predictions over a sequence of inputs (see sub-figure (a)): for
each ¢, the current input x; and last output s;_; are consumed and mapped to the output that is
fed into the same RNN unit for the processing at the next time step. A better way to visualize
the RNN is to unroll it into a network with no cycles (see sub-figure (b)). The unrolled RNN
can be regarded as a deep feed-forward neural network in that all RNN units share the same
set of parameters.

layers, say, stacking layers from left to right. A benefit of treating RNNs as deep feed-forward
neural networks is that one can use the same methods to train and deploy the two types of
neural networks. An example is that both RNNs and feed-forward neural networks can be
trained by the error-propagation tool provided within a common optimizer.

There are a number of RNN variants, differing in ways of defining RNN(-). The simplest
of these is to formulate RNN(+) as a single-layer neural network. Assume that s;_; and x; are
in R% . The form of RNN(-) is given by:

RNN(s;_1,%;) = (si_1-U+x;-V) (2.35)

where U € R% %9 and V € R% ¥ are parameters. The common choices for the activation
function) are TanH(-), Sigmoid(-), ReLU(-), and among others. Eq. (2.35) is a single-layer
neural network because it has the same form as Eqgs. (2.3-2.4):

¢(Si_1~U+Xi-V) = ’(/J([Si_l,xi]-W) (2.36)
where [s;_1,x;] is the concatenation of s;_; and x;, and W € R2dnxdn jg the parameter matrix

that is formed by [g] .

RNNs often work as a part of a model. For example, the input of a recurrent unit could be
either a representation of real data or an output of another neural network. Also, we can stack
other neural networks on top of a recurrent unit. For example, in many real-world systems, an

2.3.2

2.3 Basic Model Architectures 85

additional layer is generally stacked on s; for projecting it to a desirable output.

Convolutional Units

Convolutional neural networks (CNN) are another well-known class of neural networks
[Waibel et al., 1989; LeCun et al., 1989]. In a biological sense, they are inspired by human
vision systems: neurons react to the stimulus in a certain vision region or patch (call it the
receptive field) [Hubel and Wiesel, 1959]. In CNNs, the receptive field describes the region
in the input space that is involved in generating the output for a neuron. CNNs are therefore
“partially connected” models in which each neuron only considers input features in a restricted
region. This differentiates CNNs from fully connected feed-forward neural networks. In
general, CNNs can resemble the hierarchical nature of features describing data and scale better
in complexity.

While CNNs have many applications in processing 2D data, such as image classification,
we discuss them here in a sequential data processing scenario for a consistent treatment of
the problem in this chapter. Typically, a CNN consists of a convolutional layer, a pooling
layer, and other layers optionally. It begins with the convolutional layer where the receptive
field is defined by a set of convolution kernels or filters. A filter is a linear mapping function
that convolves the input features in the receptive field to form an output feature. For example,
consider a sequence of numbers x;...x,,. The filter ranging from position 7 to position ¢ 47 — 1
is defined to be:

v = Conv(x(ir—1, W)

= X[z’,z‘+r71]'W
r—1

— Z$i+k'Wk (2.37)
k=0

where 7 is the size of the receptive field, x[; ;;,_1) is the sub-sequence w;...zi1,—1, and
W < R" is the parameters of the filter. Then, a sequence of output features can be generated
by moving the filter along the input sequence. Let stride be the distance between consecutive
moves. The output for move i is then defined to be:

v = COHV(X[strideXi,stridexi+r—l]) W) (2.38)

In this way, the convolutional layer transforms the input sequence z;...x, to the output
sequence vy...v| _m__ J4. A remark here is that the parameters W are shared across positions of
the input sequence. This method is known as parameter sharing or weight sharing. Parameter
sharing makes a CNN efficient because it requires fewer parameters than a feed-forward neural
network given the same number of neurons.

A problem with the above formulation is that the use of the filter may not be tiled to fit the
input sequence. For example, when stride x ¢ 4+r —1 > m, the input of the filter is incomplete.
A commonly used solution is padding. It simply sets the features outside the input sequence

4| .| stands for the floor function.

86 Chapter 2. Foundations of Neural Networks

vy = Conv([z1,z2,x3]- W)
=z - Witz Wo+xs-W;

<

Convolutional Layer U1 U2 U3 U4
Input 0 x1 T2 T3 T4 0
Padding Receptive Field Padding

Figure 2.8: Convolution over a sequence of numbers {z1,z2,x3,24} (r = 3 and stride = 1).
The receptive field defines the region in the input that is taken in computing the output. Here
the receptive field has a size of 3, that is, the convolutional operation covers three consecutive
numbers in the input sequence. The filter (or convolutional kernel) outputs a weighted sum of
these numbers. Each time we slide the receptive field over the input, the filter generates a new
output. As such, the output of the convolutional layer is a vector of numbers. Also, a padding
number (i.e. 0) is added to each end of the sequence so that the convolution is feasible when
the receptive field is incomplete.

to a constant. For example, we can attend dummy feature vectors (say 0) to each end of
the sequence so that all convolution operations are feasible. See Figure 2.8 for an example
filter computed over a sequence of numbers. Note that the receptive fields of different filter
applications may overlap. This is beneficial sometimes because it reduces information loss in
feature representation when a low-level feature is used in forming multiple high-level features.

In addition, a convolutional layer can involve an activation function (-) to perform some

non-linear mapping on the filter output. Let my = | | be the number of filter applications.

m
stride
The output of a convolutional layer is given by

B | = o v]) (2.39)

In general, a convolutional layer may not be restricted to a scalar-based input or a single
filter. Often, we can take a vector as the representation of a token in the input sequence, and
take a set of filters as feature extractors. To this end, we can adopt the same formulation as in
Eqgs. (2.37-2.39), but replace z;, v; and h; by the vectorized counterparts.

A convolutional layer is typically followed by a pooling layer. Like convolution, pooling
is a function that sweeps a filter on a sequence. But the pooling operation does not have
any parameters. It can be instead thought of as an aggregation function that performs down-
sampling on the input sequence. There are several ways to design a pooling function. One
of the most common methods is max pooling which outputs the maximum value in the

2.3.3

2.3 Basic Model Architectures 87

Pooling

Filter 1 Filter 2

Figure 2.9: Example of CNN. There are two filters for the convolutional layer. The input is
a sequence of 6 tokens represented in their feature vectors {x1,...,x¢}. To tile the filters to
fit the input sequence, two padding vectors are attached to each end of the sequence. When
applying a filter, we map the feature vectors in the receptive field to a new feature vector. For
example, for filter 1, the receptive field is a 6 x 3 rectangle in the input, and the output is a
2-dimensional feature vector. By sweeping the filter on the sequence, we obtain a sequence of
feature vectors, say, a sequence of 8 feature vectors, each having 2 features. The pooling layer
fuzes features along the sequence. For example, performing the pooling on the output of filter
1 results in 2 fuzed features. The final output of the CNN is two 2-dimensional feature vectors.

receptive field. Another method is averaging pooling which outputs the averaged value over
the receptive field. For a complete picture of how a CNN works, Figure 2.9 depicts a running
example where convolutional and pooling operations are performed on a sequence of feature
vectors via 2 filters.

Gate Units

In neural networks, a gate is used to decide how much information is passed along [Hochreiter
and Schmidhuber, 1997]. Consider a standard RNN as an example. At each time step ¢,
instead of directly passing the previous state s;_1 € R% to the recurrent unit, it might be more

2.3.4

88 Chapter 2. Foundations of Neural Networks

interesting to see how much information in s;_; is useful for a next-step decision. In this
case, we want s;_1 to be more like a real memory: as the time goes by, something should be
memorized, and something should be forgotten.

A way to achieve this goal is to introduce a coefficient for controlling the scale of data
flow. Here we reuse the notation in RNNs (see Section 2.3.1), but our description is general
and could be applied to all the cases that need such a method. Let z € [0, 1]% be a coefficient
vector, where z; = 0 means that nothing is memorized for dimension %, and z; = 1 means
that everything is memorized for dimension i. We can set z as a gate on s;_;. This can be
formulated as:

Gate(z,s;-1) = zOs;_1 (2.40)

where © is the element-wise product of two vectors or matrices. Gate(z,s;_1) is an update of
s;—1. Thus, z can be called an update gate, or a forget gate, or something similar. Alternatively,
we can define the gating function in another way:

Gate(z,si,l) = (1*Z)@Si,1 (241

Egs. (2.40) and (2.41) basically tell the same story but have different interpretations for z in
practice.

The key problem here is how to obtain z. A general method is to define z as the output of
another network. For example, for a recurrent unit, z can be defined to be:

zZ = Sigmoid(si_l Wi +x;- Wy + B) (2.42)

The use of the Sigmoid activation function guarantees that the output falls into the range of
[0,1]. Note that Eq. (2.42) describes a learnable gate. This in turn makes the gate a part of the
model and can be trained to fit the data. There are a number of methods to design a gate, and
we will see a few in Chapter 4.

Normalization (Standardization) Units

A neural network works by transforming feature vectors layer by layer. While the multi-layer,
multi-dimensional nature of neural networks enables the models to compute complex functions,
it might lead to very different distributions of output activations across layers or features. This
is a problem with deep neural networks because a model of this kind has to adapt to different
distributions over different layers or different features [loffe and Szegedy, 2015]. Sometimes,
as model parameters are initialized randomly in all layers and in all feature dimensions, it is
likely for some features to be large values. In this case, the model would be biased to those
large value features.

A way to mitigate this issue is normalization, which standardizes an n-dimensional feature
vector s as

Normalize(s) = a® SR B (2.43)
o+e€

2.3.5

2.3 Basic Model Architectures 89

where 1 € R™ and o0 € R™ are the mean and standard deviation of s, respectively. € is a small
number used for numerical stability [Chiang and Cholak, 2022]. «« € R™ and 8 € R™ are the
parameters of the normalization unit. A simple choice is & = 1 and 8 = 0, whereas a more
sophisticated method is to learn v and S together with other parameters.

We may implement Eq. (2.43) in several ways that differ in how to define 1 and o. Let us
consider this for one dimension in s, say s, in a general setting. Suppose that s is drawn from a
set of feature values {2;. The mean and the standard deviation on €}, are then defined to be:

1
pE = Y s (2.44)

‘Qk| SEQ
1
Ok = —_— " (s—,uk)Q (2.45)
\/le! g;‘k

Several methods are available to define (2. For example, one can define {2 as features in

the same layer [Ba et al., 2016], or features along the same dimension over different samples
or input positions [loffe and Szegedy, 2015; Ulyanov et al., 2016], or something in between
them [Wu and He, 2018].

An advantage of normalization is to put features on the same scale and make them compa-
rable. This has been found to be very helpful for stabilizing the training process and making
neural networks better behaved. As we will see in subsequent chapters, normalization plays an
important role in many successful systems.

As an aside, while the term normalization in deep learning is usually referred to as a process
of subtracting the mean and dividing by the standard deviation, it is in fact a standardization
process. In other areas, by contrast, normalization is more often referred to as a technique that
scales all entries of a vector to the interval [0, 1]. Standardization has no such requirement.
It instead tends to have the input centered around 0. In this sense, normalization might be a
misnomer in deep learning somehow. Nevertheless, normalization and standardization are used
interchangeably in this book when referred to processes like Eq. (2.43).

Residual Units

The success of deep neural networks has been mostly accredited to the more and more layers
used in forming more complex functions. Although stacking a large number of layers is the
simplest way to obtain a deep model, it has been pointed out that such a model is difficult to train.
There are several reasons for this, e.g., optimization algorithms, gradient vanishing/exploding
in passing through stacked layers, parameter initialization, and so on. Even, a further notable
disadvantage comes with regard to feeding a single representation to upper-level feature
extractors, as one might want direct access to the intermediate representations several layers
ahead.

Residual neural networks are one of the most effective approaches to addressing these
issues [He et al., 2016a]. They are a special type of neural networks that add residual
connections (or skip connections, or shortcut connections) over layers in a layer stack. Let
F(x) be a neural network that maps x to some output. A residual neural network build on

2.4

241

90 Chapter 2. Foundations of Neural Networks

Residual Connection Residual Connection

~

X

(0 — (I+1)
F(x®) —)@ | p(x D)y —)@X—>l+2
Layer [B Layer [+1

Figure 2.10: A 2-layer residual neural network. For each layer, there is a skip or shortcut
connection (in red color) that directly adds the input to the output.

F(x), given by summing the mapping F'(x) and the identity mapping x:
y = F(x)+x (2.46)

A more common use of residual connections is in a neural network consisting of a number
of identical layers. Let x' and y' be the input and output of layer [in a residual multi-layer
neural network. The output of layer [can be defined as:

Xt = P +x (2.47)
or
yo = Fy'hH+y! (2.48)

Figure 2.10 shows the architecture of a 2-layer residual neural network. Clearly, the
residual connections add the outputs of current layers directly to the outputs of the next layers.
The added identity mapping is generally thought of as one of the most effective ways to
simplify the network and ease the information flow in a deep model.

Training Neural Networks

In this section, we turn to the training problem, which is fundamental in developing neural
network-based systems. Most of the discussion here is focused on methods in a supervised
learning setting. We will discuss unsupervised methods in Section 2.6.

Gradient Descent

The gradient method has been proven to be one of the most successful methods for training
neural networks. The basic idea is to iteratively update parameters so that we can minimize a
differentiable loss function. In an update, the values of the parameters are adjusted in a way
that the loss degrades the fastest. In a mathematical sense, it requires the update to be in the

2.4 Training Neural Networks 91

Figure 2.11: Gradient descent in a 2D space (blue lines stand for level sets). The goal is to find
the parameters (i.e., values along the two dimensions) that minimize the value of a given loss
function. Gradient descent does this by starting at a random point and stepping to the minimum
in a number of updates of the parameters. In each update, it adjusts the parameters 6; in the
direction that makes the loss lower. The idea here is that the update chooses the direction of
the steepest ascent, that is, the model moves a step in the direction of the negative gradient of

the loss (i.e., — agéft)). The size of the move is controlled by a hyper-parameter [, called the

learning rate. Thus, the amount of the change to the parameters is —Ir - 8%5,2”. By adding this

to 6;, we obtain the new parameters 6;, 1. This process repeats for a number of updates until
the value of the loss function is close to the minimum.

opposite direction of the gradient of the loss. This is known as gradient descent or steepest
descent. Let ; be the parameters at step ¢ (call it an update step or a training step), and
L(6,) be the loss computed by the model parameterized by ;. The update rule (or delta rule)
of gradient descent is given by the equation:

OL(6:)
06,

0t+1 = 91‘, —lr- (249)

where aggjt) is the gradient of the loss with respect to the parameters at step ¢. It can obtained

by running the error-propagation algorithm presented in Section 2.1.3. Since 6, is usually of

multiple dimensions, 8g(£t) could be a vector or matrix that has the same shape as 6;. Ir is the

learning rate that controls how big a step we take in the direction of the minimum. While [Ir
can be simply set to a constant value during training, it is more common to adjust its value as
the training proceeds (see Section 2.4.4 for a discussion). See Figure 2.11 for an illustration of
gradient descent.

Eq. (2.49) gives a very basic definition of gradient descent. There are a number of
improvements to the form of Eq. (2.49). Some of them are:

92

Chapter 2. Foundations of Neural Networks

* Gradient Descent with Momentum. In physics, momentum is a vector quantity that

describes the mass of motion. If we think of updating parameters as moving an object in
a space, then we need to consider the momentum of the object at a position to determine
the direction of the next move. This idea can be implemented by re-defining the update
rule as:

01 = Op+vy (2.50)

where v; is the velocity vector of the momentum. In the classic momentum method
[Polyak, 1964], v; is defined to be:

AL(6;)
90,

2.51)

Vg = ANvp_q1—lr-

v; retains some of the previous momentum (i.e., v;—1), followed by a correction based

on the gradient (i.e., ag(eft)). Ais a scalar for weighting v; in an update. A well-known

improvement to Eq. (2.51) is to take into account the momentum in the gradient, avoiding
a too large velocity when approaching the minimum [Nesterov, 1983], like this

0 [L(Ht) + A 'Utfl]
00,

vy = AU —lr- (2.52)
A more detailed discussion on the difference between Eq. (2.51) and Eq. (2.52) can be
found in Sutskever et al. [2013]’s paper.

Adaptive Gradient Descent. In adaptive methods for gradient descent, the update rule
is adapted to every parameter, rather than the whole model. AdaGrad is a method of
this kind [Duchi et al., 2011]. It scales up the learning rate for parameters that have not
been updated too much, and scales down the learning rate for parameters that have been
much updated. Assume that 6; and %(st) are both d-dimensional vectors. We can define
a new variable G € R%*? as the sum of the outer product of the gradient over the past ¢

steps”:

OL(0;),T OL(6;)
G, = . 2.54
! 2_; [a0] 0; 2:54)
5Given two vectors a = [a1 -+ aqlandb=1[by --- by, the outer product of a and b is:
a®b = aT b
o,
= |][bd]
Laq
[a1b1 -+ aibg
— (2.53)
Laghby -+ agbg

2.4 Training Neural Networks 93

In general, (Gt)% € R? can be viewed as an indicator that describes to what extent a
parameter has been updated so far. However, computing (Gt)% is extremely expensive.
So it is more common to use the diagonal of G; instead. Then, the update rule of
AdaGrad is given by:

Ir ® 8L(9t)
V/diag(Gy)+e 96

where diag(G) is the diagonal of Gy, i.e., diag(G:)(k) = G¢(k,k). € is a smoothing
factor for numerical stability. Instead of summing over those squared gradients in an

b1 = 0,— (2.55)

unweighted manner, another way is to reduce the impact of “old” gradients and make
“recent” gradients more important. AdaDelta considers this by accumulating squared
gradients with a decay factor [Zeiler, 2012]:

OL(O:) BL(Gt)> (2.56)

2 —_ L2 1— .
gt 9 gt—l + (J) 6915 8915

where o is the decay factor of a value < 1. Like Eq. (2.55), the update rule for AdaDelta
can be given by replacing diag(G}) with g2
Ir 8[1(90

Voit+e 90

Since \/g? + € can be seen as the root mean square (RMS) of the gradient, Eqs. (2.56-
2.57) are also known as the RMSProp method [Hinton, 2018].

Opp1 = 0;— (2.57)

* Adam (Adaptive Moment Estimation). The Adam optimizer combines the merits of
both the adaptive gradient descent and momentum methods [Kingma and Ba, 2014]. It
defines an estimate of the mean of the gradient (the first moment) and an estimate of
the variance of the gradient (the second moment). Let m; and v; be the two moment
estimates. They are given by the equations:

L

my = Bl'mtlJr(lﬁl)'aaéft) (2.58)
L(6 L(6

v = 52~vt_1+<1—62)-<88§);)®88(9t”) (2.59)

where (31, 82 € [0, 1] are hyper-parameters for a trade-off between the previous estimate
and the gradient (or squared gradient) at the current step. 31 and 32 are also treated as
the decay factors of these averages. For example, common choices for 31 and 32 are 0.9
and 0.999. As the initial moments are set to 0, these estimates are biased to 0 vectors at
the very beginning of the training process. To address this issue, bias corrections are

2.4.2

94 Chapter 2. Foundations of Neural Networks

used in Adam, leading to bias-corrected estimates:

N me

= 2.60
iy - (2.60)
N Ut

= = 2.61
Ut 1—/85 (6)

Since (1, B2 < 1, the corrections would be sufficiently small if a larger number of updates
are performed. The update rule is finally defined to be:

my
V f}t +e€

Eq. (2.62) resembles the general form of gradient descent, but makes use of both the

(915.;,.1 = 915 —Ir- (262)

momentum method (i.e., the moving average of the past gradients) and the adaptive
method (i.e., the moving average of the past squared gradients). In practice, Adam has
become a popular optimizer for training neural networks.

Improving gradient descent is an active sub-field of deep learning, but a full discussion
of all those techniques is beyond the scope of this document. A few related issues will be
discussed in the remainder of this section.

On a last note of this subsection, a practical issue that one should consider in utilizing
iterative training methods is when to stop training. Stopping criterion is a general topic in
optimization. For gradient descent and its variants, it is common practice to set a maximum
number of training steps or training epochs®, say 20,000 steps, or 100 epochs. As an
alternative, we can perform training until convergence. For example, we can say that the
training coverages if the loss tends to be stable for a number of training steps. When there is
some data for validating the model, a better method may be to check the states of the model
on validation data. For example, we can stop the training when the prediction error increases
on the validation data. This method, known as early stopping, is often used as a means of
regularization. In Section 2.5.3, we will see more details about how to early stop the training
by using a validation dataset. On the algorithmic side, there has been much interest and work
in studying the convergence and error bounds for machine learning methods. We refer the
interested reader to a few textbooks for further discussions [Mohri et al., 2018; Kochenderfer
and Wheeler, 2019].

Batching

The loss function is an essential aspect of the training of neural networks. While a number
of mathematical forms are available to define the loss function (see Section 1), we still need
to decide in what scale of samples we use that loss function. Perhaps the simplest method is
stochastic gradient descent (SGD). In each update of parameters, SGD computes the loss
function on a single sample that is randomly selected from the training dataset. Let D be a set

(@)

of training samples, and (x(i),ygOl d

) be a randomly selected sample from D. Given a neural

N training epoch means that the trainer goes over the whole training dataset for one time.

2.4 Training Neural Networks 95

network
v =Py (x“”) (2.63)
the loss of SGD is defined to be:
L) = Ly) (2.64)

where L(yéi) , ygo)l q) is a sample-level loss function that counts errors in the model output yg)

(@)

with respect the benchmark y gé)l 4

SGD has been one of the most important optimization methods in machine learning due
to its simplicity. However, SGD converges slowly because it is just an analog of the actual
gradient on the entire training set. To estimate the gradient in a more precise way, we can take
into account a set of samples (call it a batch) in computing the loss. This method is known as
batching. Let S be a set of samples from D. The loss function is then defined on .5, as follows

1
LO) = > L(ysYeou) (2.65)
(y9 7ygold)es

If S = D, then we have the batch gradient descent (BGD) method, i.e., the gradient is
estimated on the entire set of training samples. In general, batch gradient descent is what
we would ordinarily call gradient descent. However, calculating the loss on all the training
samples simultaneously is time consuming. In practice, it is more common to use a batch
much smaller than D. This is known as mini-batch gradient descent. It is adopted in learning
real-world systems for its good efficiency and strong performance.

As another “bonus”, batching is generally used as a way to make dense computation on ma-
trices for system speed up. Assume that S consists of 7 samples { (x (1), ygoll))y ery (x(m) ygo’"f))}.
We can batch all input vectors and benchmark vectors as matrices:

(i)
X = : (2.66)
(im)
[¥gold |
F (i)
ygolld
Ygold = (2.67)
(im)
|V gold |

Then, we can run the neural network on the batched input and output, like this:

Yo = F5(X) (2.68)

2.4.3

96 Chapter 2. Foundations of Neural Networks

Likewise, we can compute the batched loss

L(0) = —-L(Y9,Ygola) (2.69)

1
m
where L(Yy,Ygo1a) vectorizes the computing of » ;" | L (yg'“),yg‘izl). Egs. (2.68-2.69)
prevent the repetitive calls of the forward and backward passes on individual samples. They
instead pack everything in a single pass through the network. This makes better use of
maximum available compute on modern GPUs which are the majority of the devices for
running deep learning systems.

Parameter Initialization

Gradient descent requires that the training process starts from some initial parameters. Since
the training objective in a practical system is often a non-convex function with many local mini-
mums, the performance of the resulting model is highly sensitive to the parameter initialization
step. Here we describe some of the most common methods of parameter initialization.

* Constant Initialization. The first method could assign the same value to all parameters
(or all parameters of a parameter matrix). This method, though quite simple, results in
that all output entries of a model make no difference, rendering the model meaningless.
It performs poorly in most cases if no randomness is introduced into training.

* Initialization with Predefined Distributions. A useful way is to randomly initialize
parameters by some distributions. The simplest of this kind is to assign a parameter a
value drawn from a uniform or Gaussian distribution, e.g., a random value in the interval
[—0.1,0.1]. Interestingly, this method is satisfactory in most cases in practice.

* Layer-sensitive Initialization. An extension to random initialization is to use tailored
distributions for different layers of a neural network. Xavier initialization is a well-
known method of this kind [Glorot and Bengio, 2010]. Given a layery = ¢(x- W +B),
let di,, and dyy, be the numbers of the input and output dimensions (i.e., the row and
column numbers of W). The standard Xavier initialization method, also known as the
LeCun initialization method [LeCun et al., 2012], gives a random number to every
parameter of W:

1 1
W c Rdedout ~ U <_ \/I’ d > (270)

where U(—a,a) means a uniform distribution over the interval [—a,a]. Likewise, we
can initialize the bias term in a similar way. As an improvement, the normalized Xavier
initialization method considers both d;, and dqy in defining the distribution, like this:

6 6
W Rdin X dout ~ _ 2.7 1
© v < \/din + dout ’ \/din + dout > ()

More details can be found in the original paper. Note that the uniform distributions can

2.4.4

2.4 Training Neural Networks 97

be replaced by the normal distributions with mean = 0 and variance = d,i or %dt'
1mn 1n ou

Many parameter initialization methods are designed for certain types of neural networks.
For example, Xavier initialization is assumed to work with the Sigmoid and hyperbolic tangent
activation functions. For ReL.U, one can refer to He et al. [2015]’s work. Another example
is initialization for deep neural networks. It has been found that appropriate initialization is
critical to the success of extremely deep models in NLP. Considering the model depth as an
additional factor in initialization, we can modify Eq. (2.71) to be:

/ 6 a 6
W e RinXdowt [[— Qs s, 2.72
© < l din + dout Tl din + dout ()

where [is the depth for a layer, and o is a hyper-parameter. Apart from this, several methods
are proposed to address the initialization of deep neural networks, including the Lipschitz
initialization [Xu et al., 2020], the T-Fixup initialization [Huang et al., 2020a], the Admin
initialization [Liu et al., 2020c], and so on.

Note that in practice we do not have to restrict training to a single starting point. It is
common to try a few starting points by using different initialization methods or random seeds,
and to choose the best performing one from these tries. It generally helps when local minimums
abound.

Learning Rate Scheduling

To achieve desirable results, it is essential to carefully configure the learning rate throughout
the learning process. While some of the update rules, as noted above, have considered scaling
the gradient for different parameters, learning rate scheduling is conventionally focused more
on designing heuristics to adjust I over training steps. In a practical sense, a too large learning
rate usually leads to overshooting around the minimum, while a too small learning rate usually
leads to slow convergence (see Figure 2.12). A common idea is to learn fast at the beginning
(i.e., a large learning rate) and learn slowly when the loss is close to the minimum (i.e., a small
learning rate). Here we present some of the popular methods for learning rate scheduling.

* Fixed Learning Rates. Fixing the learning rate is generally a bad strategy, but could be
used in prototyping systems, e.g., a quick test of a new method by training it for only a
few epochs.

* Learning Rate Decay. Decay is a commonly-used technique for learning rate schedul-
ing. There are many approaches to this idea. For example, one can halve the learning
rate after each training epoch. Here we use n; to denote the number of training steps,
and Tqecay be how often we change the learning rate (e.g., 100 steps). Table 2.2 shows
several decay functions for learning rate scheduling.

* Warmup and Decay. As noted in Section 2.4.3, it is common to initially set model
parameters to random values when a neural network is being trained. However, learning
from scratch with a large learning rate is usually not a good choice because the gradient
at the early stage of the training is not much precise and the state of the model is unstable.

98 Chapter 2. Foundations of Neural Networks

(a) A small learning rate (b) A large learning rate (c) A desirable learning rate

Figure 2.12: Learning with different learning rates. Small learning rates (left) help us step
to the minimum in a precise way, but require much additional time for convergence. Large
learning rates (middle), on the other hand, lead to fast learning, which is very beneficial when
we are far away from the minimum. However, as we get closer to the minimum too large
learning rates cause overshooting. A more desirable strategy (right) may be to learn the model
in a reasonably fast way when there is a long way to go, and to learn the model slower when
we are close to the minimum.

Thus, it is more reasonable to start with a small learning rate and gradually increase it.
Then, when the model is trained for some time, the learning rate begins to decay as usual.
Such a thought motivates the warmup and decay method for learning rate scheduling.
A popular form of this method in recent studies is proposed in Vaswani et al. [2017]’s
work, as follows:

. ny —0.5 s 1.
lrn, = lro-min (() , - (Nwarmup) 5> (2.73)
Ndecay Ndecay
where [rq is the initial learning rate, and 7warmup 1S @ hyper-parameter that specifies
for how many steps we execute the warmup process. Figure 2.13 plots the curve of Eq.
(2.73) where Nwarmup» Ndecay> and [rg are set to 4,000, 1 and 1. We see that the learning
rate increases linearly in the first 7warmup Steps and then decays as an inverse square
root function.

Choosing an appropriate learning rate scheduling strategy is a highly empirical problem,
and there are no universally good choices. The problem is even harder if we consider the
correlation between the learning rate and other aspects of the training, though learning rate
scheduling is typically taken to be an individual task. For example, when a larger batch is used
in training, a larger learning rate is desired for a good result [Ott et al., 2018b; Smith et al.,
2018]. So, making good learning rate choices is still difficult and time-consuming in neural
network applications. Occasionally one needs a large number of trial-and-test runs to find a
desirable learning rate setup for the particular problem at hand.

2.5

2.5 Regularization Methods 99

Entry | Formula Hyper-parameters
Piecewise Constant Decay | Ir,, = f3; values {f1,...,8m}
if vy < 8— <7 thresholds {~1,...,Ym }
ecay ny
Exponential Decay | lry, = lrg- \™decay decay rate), init. Ir. [rg

ng
(Drop) Exponential Decay | Iry,, =Irg-)\L”decayJ

decay rate), init. Ir. lrq

Natural Exponential Decay | Iry, = lro-exp(—A- +—) decay rate), init. Ir. Irg
ecay
Inverse Time Decay | Ir,, =lrg- ﬁ decay rate), init. Ir. Irq
Mdecay
(Drop) Inverse Time Decay | lr,, =lrg- W decay rate \
Ndecay

Cosine Decay | lry, =Irg- ((1 — Q) - Cdecay T a) coefficient «

Cdecay = 5+ (1 +cos(m- —2—)) | init. Ir. Irg

ecay

Table 2.2: Decay functions. A = decay rate, [ro = initial learning rate, and {3;}, {~;} and
a = other hyper-parameters.

0.015| f 1
o o010 [|
23 1
o0 X
£ -
g :
g 0005 [:
0.000 : ‘ ‘ ‘
0 4,000 10,000 20,000 30,000

number of update steps (n;)

Figure 2.13: Learning rate scheduling: warmup and then decay (nwarmup = 4,000, ngecay = 1,
and lrp = 1). The learning rate increases linearly with n; for the first 4,000 steps. Then, the
learning rate follows an inverse square root function and decays as the learning continues.
The change of the rate learning will be small if n; is sufficiently large, indicating the fine
adjustment of the parameters when we are approaching the minimum of the loss.

Regularization Methods

We now discuss the regularization methods for preventing overfitting. While regularization is a
wide-ranging topic in machine learning, we present some of those that are commonly adopted
in training neural networks.

2.5.1

100 Chapter 2. Foundations of Neural Networks

Norm-based Penalties

One of the most popular methods involves a regularization term based on the /, norm. A
general form of the regularized objective can be defined as:

A~

0 = argminL(f)+a-R(9) (2.74)
]
where R(6) is the regularization term weighted by a coefficient «. In general, R(6) serves as
an additional loss that penalizes complex models. This is motivated by the fact that complex
models are more likely to overfit the data (see Section 1). To impose a penalty on the model
complexity, a simple way is to define R(#) as the {; norm on the parameters . Let us treat ¢
as a vector of parameters. The /; norm-based regularization term is given by

R(O) = > |6 (2.75)

Eq. (2.75) penalizes models having large value parameters. This can be understood in a way
from a polynomial function: large coefficients of variables in a polynomial function lead to a
complex curve. Typically, regularization with the /; norm is referred to as the /; regularization
or the Lasso regularization. Such a method does not require updates of the trainer, and can be
implemented by standard gradient descent. More interestingly, the [; regularization typically
provides sparse solutions to the original training objective. It biases the model to those having
small values (or even zero values) for most of the parameters and large values for only very
few parameters. This also implies an inherent ability of feature selection because parameters
are forced to be close to zero for not-so-important features.

An alternative to the [; regularization is the /5 regularization or the Ridge regularization.
In the 5 regularization, the regularization term is given by

R(A) = /Z 16:]2 (2.76)

Like the [; norm, the [3 norm penalizes the cases that deviate the model parameters far away
from the origin. However, it slightly differs from the /; norm in that the [, norm enforces
all parameters to have small values (but not necessarily to be zeros) and there are no large
value parameters. In this sense, the use of the /o norm does not introduce sparsity into the
solution but performs “smoothing” on the underlying distributions of features. Note that the
lo regularization has a relatively bigger effect of regularization. So, it is sometimes called
weight decay to emphasize its ability to prevent the model from learning parameters of too
large values.

In a broader sense of machine learning, Eq. (2.75) offers a general method to introduce
prior knowledge into the training of a neural network. There are a number of ways to design
the regularization term, and addressing overfitting is just one purpose of these designs. We can
see many applications of this approach in NLP, and will see a few examples in the remaining
chapters of this document.

2.5.2

2.5 Regularization Methods 101

Dropout

In a real-world neural network, a layer typically involves hundreds or thousands of neurons and
produces a feature vector accordingly. While each of these features is computed by a single
neuron, they work together to form the input to each neuron of the following layer. As a result,
a feature is forced to cooperate with other features. It is like a group of people sitting together
and making a collective decision. Although a member could have opinions independently, he
or she occasionally tries to correct the error when all other members have had their decisions.
In this case, every group member is co-adapted to others in the group [Hinton et al., 2012].
From a feature engineering standpoint, the co-adaptation of neurons helps when modeling
complex problems, as it implicitly makes some sort of higher order features. Beyond this,
the strong supervision information (e.g., propagating errors through layers) could strengthen
the co-adaptation in training. This explains more or less why a neural network with a large
number of neurons can fit complex curves. At test time, however, the co-adaptation prevents
generalization. Since all neurons of a layer are learned to collaborate well on the training
data, a small change in the input could affect all these neurons and lead to a big change in the
behavior of the neural network.

A way to mitigate or eliminate complex co-adaptations is to learn for each neuron to predict
in the absence of other neurons. To this end, one can simply drop some of the neurons in
training. This method is known as dropout [Srivastava et al., 2014]. Let n be the number of
neurons of a layer. Given a probability p (call 1 — p the dropout rate), we can generate an
n-dimensional mask vector M., where every entry is set to 1 with a possibility of p, and set
to 0 with a possibility of 1 — p. Then, a dropout layer can be defined as

Y = Maop ©¢(x-W+B) 2.77)

where ¥ (x - W + B) is a usual single-layer neural network. Eq. (2.77) only activates the
neurons whose masks are 1. For dropped neurons, all connections from/to these neurons
are blocked (see Figure 2.14 (a)). During training, Mgy, is randomly generated in a call
of the forward and backward passes. A neuron therefore can learn to work with different
neurons each time and would not adapt to the same group of “co-workers”. Another way to
understand dropout is to view it as learning sub-models of a “big” model. The use of Eq.
(2.77) is essentially a sampling process that extracts a sub-network from the original network.
So, training with dropout is doing something like training an exponentially large number of
sub-networks’. On the other hand, the training is efficient because these sub-networks share the
same parameters for the same neuron and the update of a parameter can benefit exponentially
many sub-networks.

At test time, all these sub-networks are combined for prediction. In this case, we do
not need to drop any neuron but use the original network as usual. This makes it simple to
implement dropout: a neuron is present with some probability on the training data, and all
neurons are present and work together on the test data. Since the connections between neurons
are involved with a probability of p in training, the learned weights are scaled down with p in

"For a single-layer network having n neurons, there are 2" possible sub-networks.

2.5.3

102 Chapter 2. Foundations of Neural Networks

active neuron all neurons
(present with p) are active

y Q O
weight Was

§>O&\

Wleight pWss
(a) Training the dropout network (b) Testing with the dropout network

Figure 2.14: Dropout for a multi-layer neural network (training vs test). At training time, every
neuron is randomly dropped with a probability of 1 — p, resulting in a slimmed network. In this
sense, dropout training is essentially a process of learning an exponentially large number of
sub-networks. At test time, the full network is used as usual, which is the result of combining
all those sub-networks for prediction. Since all connections between neurons are activated with
the probability p during training, the weights of the predicting network are scaled down with p.

the predicting network, i.e., a layer has a form:
y =v(x:pW +pB) (2.78)

See Figure 2.14 for a comparison of training and applying a dropout network. Eq. (2.78)
requires an update of the predicting system. An alternative is to take into account the scaling
issue only in the training process and leave the predicting system as it is. For example, we can
scale up all the parameters with % in dropout training, like this

1 1
y = Mdmp(ai/}(x-;W—i—;B) (2.79)

Since multiplying %W with p yields W (this also holds for the bias term B), we can use
W (and B) as the parameters of the predicting system.

Early Stopping

In Chapter 1 we have discussed a bit of how to stop the training by monitoring the performance
on the validation data. It can be treated as a way of model selection that seeks an appropriate
state between underfitting and overfitting. Note that early stopping is not just an empirical
method. It is also well explained from the perspective of statistical learning theory. For example,
researchers have found that, under some conditions, early stopping has a similar effect as the
lo regularization and restricts the learning to the region of small value parameters [Bishop,
1995a; Goodfellow et al., 2016]. Also, other research shows that some early stopping rules

2.5.4

2.5 Regularization Methods 103

have a tight relationship with the bias-variance trade-off and could guarantee nice properties of
convergence [Yao et al., 2007].

On the other hand, early stopping requires several heuristics to make it practical and useful.
The first problem is the condition of stopping. Ideally, one might imagine that there is a
perfect U-shaped error curve on the validation data, and the training can be halted immediately
when the error starts to increase. The truth, however, is that the error curve cannot be simply
described as a strictly convex function of the training time. After drops in the error in a certain
number of training steps, the performance of the model tends to fluctuate, leading to many
local minimums. The problem would be more interesting if one wants to save time and stop the
training as early as possible. However, we never know whether the current choice or decision
is the best one because we have no idea of what happens next. A commonly-used method is
to decide whether the training should stop by checking the model states for a number of past
update steps (or epochs) [Prechelt, 1998]. Some early stopping conditions are:

* The change in the performance is below a threshold for a given number of steps (or
epochs).

* The change in the model parameters is below a threshold for a given number of steps (or
epochs).

* The average performance over a given number of steps (or epochs) starts to decrease.

* The maximum performance over a given number of steps (or epochs) starts to decrease.

However, using the model at the point that we stop the training is not always a good choice.
In practice, a model often has a large variance in generation error around that point, making
model selection more difficult. Instead of “selecting” a model, an alternative way is to combine
multiple models. For example, we can save the model for every run of a given number of
training steps (call each copy of the model a checkpoint). The final model is induced by
averaging the parameters of the last few checkpoints. For better results, one may use more
sophisticated ensemble methods (see Section 1).

Smoothing Output Probabilities

In statistics, smoothing refers to the process of reducing the value of noisy data points (probably
of high values) and increasing the value of normal data points. It is typically used when a
distribution is estimated on small data and the probabilities of rare events are not well estimated.
For example, consider the language modeling problem described in Section 2.2. A language
model is trained in a way that enforces the model to output a one-hot distribution, that is,
the total probability of 1 is occupied by only one word, leaving other words assigned zero
probabilities. It may be more desirable to distribute the probability to all words, even though
many of them are not observed to be the answer given the previous words. In this way, the
model learns to make a soft prediction of word probabilities so that it can generalize better on
unseen data.

Given a distribution p = [pl pn} , it is the purpose of smoothing that we obtain the

new estimate between p and a uniform distribution % A common approach to this idea is to

104 Chapter 2. Foundations of Neural Networks

use a shrinkage estimator to improve p by making it closer to % For example, the addictive
smoothing mentioned in Section 1 is a simple type of shrinkage estimator. Here we consider,
for example, smoothing a multinomial distribution. Let p; denote the probability of event k
and s; denote a quantity that describes some observed “count” of the event. The probability
Py 1s given by

Sk

Pk = wn (2.80)
> =15k
Then, the smoothed version of p;. is defined as
. Sk +«
P = ST (2.81)
> k1 (Sk+)

It simply adds a quantity « to each si. The value of a controls the smoothness of the resulting
estimate. For example, pr = p if =0, and py = % if o chooses an extremely large value.

Apart from addictive smoothing, we can smooth a distribution in a Softmax manner, as
follows

by = exp(sy/B)
> h—1€xp(sk/f)

This form is known as an instance of the Boltzmann distribution [Uffink, 2017], where s,

(2.82)

is viewed as the negative energy of a state, and (5 is viewed as the temperature indicating
the degree of smoothing. Note that s;, can be interpreted in many ways. For example, in a
neural network, s, is typically defined as the state of a neuron. Sometimes, s;, can even be a
probability. This means that we can directly apply Eqgs. (2.81-2.82) to any p even if there is no
prior knowledge about how p is estimated. Then, we can rewrite Egs. (2.81-2.82) by replacing

Sk with pg:
. Prt+ o
= = (2.83)
br > et (Pt)
o exp(pr/) (2.84)

P S exp(p/B)

Another method of smoothing is to interpolate p with the uniform distribution. A form of
the interpolation is given by

1
P = (l—e)-pweE (2.85)

where € is a hyper-parameter indicating to what extent we rely on the uniform distribution in
computing pg. To illustrate how Eq. (2.85) works, let us suppose that p is a one-hot vector,
say, pr = 1 if k = z and py, = 0 otherwise. By using Eq. (2.85), we subtract an amount of
probability (i.e. €) from p,. The subtracted amount of probability is then redistributed to
all dimensions evenly, making the resulting distribution more flat-topped and smoother. See
Figure 2.15 for an illustration.

2.5.5

2.5 Regularization Methods 105

D A
82 S

. .2.2..2.2.2.2.2.2.3
ule—02) 0202 [02 02 02 02 .02 02 0

Figure 2.15: Smoothing a distribution by interpolating it with the uniform distribution: p; =
(1—¢€)-pp+e- % For each dimension £, it subtracts an amount of € from the probability py
and redistributes this amount of probability evenly to all the variables, that is, every variable
gets a probability of - P&,

In NLP, since many systems make probability-like predictions, a common application of
smoothing is to smooth a system’s output. There are two ways. First, we can smooth the
benchmark probability such that the model is guided by the generalized error rather than the
error made by hard decisions. For example, the label smoothing technique adopts the same
form as Eq. (2.85) and improves the benchmark representation on categorical data [Szegedy
et al., 2016]. Second, we can reduce the steepness and increase the tailedness of a predicted

distribution®

. This method is often used when the posterior probability of the prediction
is required, such as minimum Bayesian risk decoding/training [Bickel and Doksum, 2015;

Goodman, 1996a; Kumar and Byrne, 2004a].

Training with Noise

Above, we have shown that adding some amount to each observed count of events in predicting
a probability can improve generalization. From a robust statistics point of view [Olive, 2022],
this is equivalent to improving the robustness of an estimator where a skewed distribution often
leads to a biased model. The addition of a small perturbation to the estimate can prevent large
biases caused by outliers and unexpected observations of rare events. In this sense, smoothing
can be regarded as a way of introducing noise into training, that is, we impose a prior of
uniform distribution on the estimate though the correct estimate may not be uniform.

Noisy training works with an idea that a model is learned to work in non-ideal conditions
and avoid overfitting data points of extreme values. Here the term noise has a wide meaning,
and there are a few different ways to regularize training with noise. One of the simplest
methods is to use noise-sensitive training objectives. For example, smoothing the benchmark

8n general one may want a distribution to be a Mesokurtic curve.

106 Chapter 2. Foundations of Neural Networks

distribution (e.g., the one-hot representation of the correct prediction) can be seen as a way of
making noisy annotations. Alternatively, we can add random noise to the input, output, and
intermediate state of a neural network. A common choice is the Gaussian noise. Suppose we
have a vector x € R™. The addition of the Gaussian noise defines a new vector, as follows

Xpoise = X+8 (2.86)

where g € R" is a vector of noise. It follows a Gaussian distribution:

g ~ Gaussian(u, 02) (2.87)

For entry k of g, it defines the probability Pr(gy) to be:

1 _ 2
Pr(gr) = Ukm-exp<—(g]€20'l;k)> (2.88)
k

where p; is the mean of the distribution, and oy, is its standard deviation. Often, py, is set to
0. oy is a hyper-parameter that is used to control the amount of noise we want to add. For
example, a large o}, means that the random noise spreads out in a large region centered around
Wi, and it is more likely to generate large noise.

Eq. (2.86) is generic and can be applied to almost everywhere in a neural network. Given a
layer y = 1(x- W + B), the noise (say ginput) can be added to the input, like this

y = ¢ ((X+ Zinput) - W+ B) (2.89)

Likewise, the noise (say goutput) can be added to the activation (or output):

y= @Z)(X W + B) + Soutput (290)

For example, one can simply make noisy inputs (or outputs) for a model and run all hidden
layers as usual, or can add random noise to all activations throughout the neural network. While
it is common to add random noise to the layer inputs and/or activations in a neural network
[Plaut et al., 1986; Holmstrom and Koistinen, 1992; Bishop, 1995b], another approach to noisy
training is to add random noise directly to model parameters or gradients [Graves et al., 2013b;
Neelakantan et al., 2015]. For example, the addition of noise to the transformation matrix has
the following form:

y = Y- (W+gy)+B) (2.91)

where g, is the matrix of noise and has the same shape as W. Also, we can add noise (say
8gradient) O the gradient of loss for W. Let s denote x- W + B. The noisy gradient can be

2.5 Regularization Methods 107

written as:
oL _ s L
OW - Os Sgradient
oL 0
= x'- (8}’ © a}S,) + 8gradient
oL
= XT : <8y ®¢,(S)> + 8gradient (2.92)

The use of noisy gradients has been found to not only be helpful for robust training but also to
ease the gradient flow in the network [Gulcehre et al., 2016].

It should be noted that noise is only present during training and the model works without
the addition of noise when making predictions on new data. In this sense, many of the
regularization methods could fall under the noisy training framework that is used to prevent
fitting the training data precisely and enable the predicting system to generalize well on the
test data. For example, dropout randomly inactivates some of the activations of a layer so that
every neuron is learned to work in a noisy environment. When running on the test data, all the
neurons work together as in a usual neural network.

There is an additional advantage with noisy training in that the use of random noise makes
“new” training samples. Even for the same sample, different noise could lead to different
training results. In other words, we essentially train the model on an infinite number of samples.
This idea is also linked to another line of research on training with synthetic data, called
data augmentation. In simple terms, data augmentation is a set of methods to generate new
samples from existing samples. An example is back-translation [Sennrich et al., 2016a].
When developing a machine translation system from language A to language B, we can first
train a reverse translation system (say the B—A system) on the bilingual data. Then, we use the
B—A system to translate some additional target-language data to source-language data. This
results in new bilingual data where the target-language data is real and the source-language
data is synthetic. This new data can be used together with other bilingual data to train the
A—B system. In addition to back-translation, there are many data augmentation methods in
NLP, including replacing words with synonyms, swapping two words, deleting/inserting words,
and so on. Moreover, we can do similar things on feature vectors, such as replacing a word
embedding with a similar embedding. Since data augmentation covers a wide variety of topics,
we refer the reader to a few survey papers for more information [Feng et al., 2021; Shorten and
Khoshgoftaar, 2019].

One last note on data augmentation. Synthetic data can be made for some purpose. A
popular idea is adversarial machine learning. It generates adversarial samples on that a
model would make mistakes (call such processes attacks) [Szegedy et al., 2014a; Goodfellow
et al., 2015]. The model is learned to make correct predictions on these samples, i.e., it defends
the attacks. For example, in some cases, the output of a machine translation system would
be completely wrong if we change the gender of the subject of the input sentence. For a
more robust system, one may train the translation model by using more gender-balanced data,
gathered either manually or automatically. But it is not easy to craft samples that look like

2.6

108 Chapter 2. Foundations of Neural Networks

normal sentences but can fool the model [Zhang et al., 2020b]. This in turn makes it interesting
yet challenging to generate adversarial samples in NLP, since a small change in a sentence
(such as word replacement) could lead to something with a very different meaning”. The
challenge also motivates a thread of research on investigating adversarial samples in NLP [Jia
and Liang, 2017; Belinkov and Bisk, 2018; Ebrahimi et al., 2018; Alzantot et al., 2018].

Unsupervised Methods and Auto-encoders

Unsupervised learning is concerned with discovering the underlying patterns in a set of
unlabeled data points. A number of problems can be viewed as classical unsupervised learning
problems, though we will not discuss them in detail throughout this chapter. For example, data
clustering is to find groupings in a collection of data objects, given no supervised signals on
what the correct grouping is. Another well-known example is association rule mining. It is
often framed as a process of establishing the relationship among sets of data objects. While
these problems are indeed covered by unsupervised learning, we will focus on problems of
unsupervised representation learning or feature learning, that is, a model is learned to map an
object from an input space to a low-dimensional feature vector space'”.

Learning low-dimensional representations has been extensively studied in the context
of finding a linear transformation from the original space to the new space. For example,
principal components analysis (PCA) and its variants try to find a linear mapping function so
that a (high-dimensional) data object can be represented as its coordinates along the directions
of the greatest variance [Pearson, 1901; Wold et al., 1987]. Here we extend the mapping
function to its natural non-linear generation and use neural networks as a solution to the
mapping problem.

As with other machine learning models, a neural network is typically learned by optimizing
model parameters with respect to some loss function. A considerable challenge with unsuper-
vised learning is that there is no benchmark to signal the learning. A solution to this issue is to
resort to non-parametric methods or heuristics (see Chapter 1). However, such methods them-
selves are not designed to address the learning issue of large-scale neural networks, particularly
when a neural network is built up of a huge number of parameters. In unsupervised learning
of a neural network, therefore, it is more common to use the “supervision” information from
the input data itself. While there are several ways to do this [Hopfield, 1982; Ackley et al.,
1985; Dayan et al., 1995; Hinton and Salakhutdinov, 2006], we focus on auto-encoders in this
section. We choose auto-encoders for discussion because they resemble the general form of
supervised models and can be trained via back-propagation.

An auto-encoder is a type of neural networks that tries to reconstruct the input data from
its representation. It is inspired by the idea of dimensionality reduction:

9By contrast, in computer vision, it is much easier to create adversarial samples by making a small change in
the input (e.g., pixels), since the input space is continuous and a small input perturbation has very little effect on
the whole image.

1011 addition to learning to represent data objects, this section also covers some topics on the generation of data
objects. We will see them in Section 2.6.3.

2.6 Unsupervised Methods and Auto-encoders 109

High-dimensional data can be converted to low-dimensional codes
by training a multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors.

— Hinton and Salakhutdinov [2006]

This also develops the idea of representation learning in that the information of an object
can be sufficiently represented by a low-dimensional real-valued vector. Typically, an auto-
encoder involves a (probably non-linear) dimensionality reduction function (call it an encoder)
to map the input object to its low-dimensional feature vector representation (call it a code).
Also, it involves a reverse function (call it a decoder) that maps the code back to the object.
So, although an auto-encoder is called an “encoder”, it is not just an encoder but a combination
of an encoder and a decoder. More formally, let x be the input vector of the model, such as a
high-dimensional representation of a word. The encoder spits out a vector describing the code
or low-dimensional representation of x, as follows

h = Enc(x) (2.93)

where Enc(+) is the encoding network. Enc(-) is typically a multi-layer neural network
and works as a plugged-in for other systems. Thus, Enc(-) is a general-purpose model. In
subsequent chapters, we will see many examples where encoders are trained and applied as
parts of “bigger” systems.

Once we obtain the code, we use the decoder to map it back to the input:

X = Dec(h) (2.94)

where X is the reconstruction of the input, and Dec(-) is the decoding network. Given the
original input x and the reconstructed input X, the objective of the auto-encoder is to minimize
the discrepancy between x and X. Suppose that the encoder and the decoder are parameterized
by 6 and w, denoted as Ency(-) and Dec, (). The training objective over a set of samples
{xM, .. x(M™} is defined as

(évdj) = al“gmmi[,()((l)’i(l))

(6,w) i—1
= argminy L (x% Dec,(h®)
(6,w) ZZ; ()
= argminZL(x(i),Decw(EHCQ(x(i)))) (2.95)

where L(-) is the loss function that computes the discrepancy between x and X. It is sometimes
called the reconstruction loss. Popular loss functions for reconstruction include mean squared

110 Chapter 2. Foundations of Neural Networks

Training Objective:

(0,00) = argmin 3 L(@) » %G))

(Ow) =1
Input x Code h Reconstruction X
7 (Bottleneck) 7
3 0 3
11" Encoder > Decoder 1
2 h=Encp(x) | ! X = Dec,(h) | ©
0 8 1
1 5

Figure 2.16: An undercomplete auto-encoder with an encoder, a decoder and a bottleneck
layer sandwiched between them. An input x (left) is transformed into a code h (middle) and
then a reconstruction X (right). The parameters of both the encoder and decoder are optimized
by minimizing the discrepancy between the input x and the reconstruction X on a number of
unlabeled samples {x1,...,X;,}. On new samples, we throw away the decoder, and use the
encoder to generate new codes or representations.

error loss, crossentropy loss, etc.

Putting together the encoder and the decoder, it is tempting to think of a network in which
we feed something into the input layer and get back the same thing out of the output layer.
The challenge here is that the low-dimensional vector h serves as a bottleneck in information
flow. There is a risk of information loss in transformation either from x to h or from h to X,
making it difficult to “copy’ the input to the output. Rather, we need to “squeeze” an object
from a high-dimensional space to a dense, low-dimensional space, and then “unsqueeze” it
from the new space to the original high-dimensional space. A consequence of this squeeze-and-
unsqueeze process is that the encoder is forced to compress the data but retain the information
as much as possible. So, the auto-encoder discussed here is also called the undercomplete
auto-encoder, because h has a smaller size than x and x. Figure 2.16 shows an illustration of
the undercomplete auto-encoder structure.

Given the loss function L(-), the encoder Ency(-) and the decoder Dec, (), the parameters
6 and & can be optimized by using the gradient descent method as in supervised learning (see
Section 2.4.1). When applying the auto-encoder, one can simply drop the decoder and use the
encoder as a feature extractor, that is, given a new input X, We generate a new representation

A~

hpew = Ency(Xpew) (2.96)

Note that the encoder is not a standalone system but typically works with other models for

2.6.1

2.6 Unsupervised Methods and Auto-encoders 111

a complete working system. For example, we can train an auto-encoder on some sentences
and place a Softmax layer on the output of the encoder to build a sentence classifier. The
classifier can be further trained on some task-specific data to solve a new problem, such as
tagging a sentence with its sentiment polarity. This also makes the application of auto-encoder
fall under the general paradigm of pre-training: a sub-model (i.e., an encoder) is first trained
on large-scale, task-irrelevant data, and then used as a component of a bigger model on a
downstream task.

Auto-encoders with Explicit Regularizers

As more complex neural networks are involved, an auto-encoder tends to learn an identity
transformation although the bottleneck makes it a bit harder to pass through without information
loss. This is what we would ordinarily expect: we could make h a surrogate of x and decode
h to something very similar to x. On the other hand, learning an exact identity transformation
requires a highly complicated model and is prone to overfitting. Fortunately, as with other
machine learning models, we can regularize the training by using the methods presented in
Section 2.5. One of the most popular methods is adding an explicit regularization term to the
loss function. Taking together Eq. (2.74) and Eq. (2.95), we can define the training objective
to be
m

0,0) = argminZL(x(i),Decw(EHCQ(X(i))D+a-R (2.97)
(6,w) i—1

where R is the regularization term accounting for some prior knowledge we want to impose
on training, and « is its coefficient. A common choice for R in auto-encoders is the sparsity
penalty (also known as sparse auto-encoders). The simplest way to implement such a penalty
is to apply the /; or I3 norm on the code, as follows

R, = ZZ ’h,(:)

i=1 k

R, = > .3 1) (2.99)
i=1

k

(2.98)

It is worth noting that, unlike those penalties on model parameters (see Section 2.5.1),
the sparsity penalty regularizes the code h (or the output of the encoder) to be sparse. The
idea of encouraging sparseness in representations stems from sparse coding [Olshausen and
Field, 1997]. It states that the information of an object is embedded in complex dependencies
among the original attributes (or features) of the object. A desirable representation learning
system should extract such dependencies and reform them to be a set of independent features.
And there should be a small number of these independent features that are active, while the
active features vary when we switch to a new object. Note also that, from a Bayesian learning
point of view, other penalties in regularized training could be interpreted as priors over models.
The sparsity penalty, however, is not a prior because it does not depend on models (or model

112 Chapter 2. Foundations of Neural Networks

parameters) but on the training data [Goodfellow et al., 2016]. In this view, the sparsity
penalty should not be treated as a “regularization” term, but simply some distribution over the
model’s intermediate states. On the other hand, the sparseness of the code, though not well
explained by conventional use of regularization terms, is indeed helpful in many applications
of auto-encoders, because it directly models the way of representing the input and imposing
“priors” on outcomes of encoders. When considered from an empirical point of view, the
sparsity penalty is still thought of as a regularizer that biases the training to certain models.

There are other choices for defining the regularization term R in addition to Egs. (2.98-
2.99). For example, a way of forcing sparsity is to penalize the cases where the average value
of each entry hy, is far away from a predefined value [Nair and Hinton, 2009]. In case that hy
chooses values from [0, 1], the regularization can be implemented by defining R as the KL
divergence between the average code over a number of samples and the expected code!!. Let
h denote the average code over {xy,...,X,, }, where the value of hy. is the mean of the k-th
variable of the code:

1 m
—. z:: (2.100)

Also, let q be the expected code, where ¢, = 7 for any k. If each entry of the average code
is viewed as a Bernoulli random variable with mean hy,, and each entry of the expected code is
viewed as another Bernoulli random variable with mean 7, then the regularization term can be
defined as the sum of the KL divergence between hj and qi over all entries:

R = S KL(hnq)
k

1—
= Y rlog—+(1—-7)- log - ! (2.101)
hp — hy,
k
In this form, R penalizes the model when h deviates from q.
As another auto-encoder variant, the contractive auto-encoder (CAE) tries to improve
the robustness of representation by introducing a new regularization term into training [Rifai
etal., 2011]:

m 4
oh®
B =2 |50
=1
m L2
OEnc(x(®)
= Z e (2.102)
i=1
where 8Egc 5) (or ‘9h() ;) is the Jacobian matrix of the representation '?, and || - || is

1 general, we can set all entries of the expected code to 7 € [0, 1]. Sparse codes will be preferred if 7 is close
to 0, as features are “inactive” in most cases. By contrast, dense codes will be preferred if 7 is close to 1.
12Suppose that the encoder is a function Enc(-): x € R% — h € R% . The Jacobian matrix of h = Enc(x) is

2.6.2

2.6 Unsupervised Methods and Auto-encoders 113

the Frobenius norm of a matrix '>. The contractive penalty helps resist the influence of
small perturbations to the input. In the geometric sense, it encourages that the neighborhood
relationship holds for output data points if the input data points are neighborhoods, in other
words, it forces Enc(-) to behave more like a contraction mapping'4, hence the name of
contractive auto-encoder.

Denoising Auto-encoders

Another source of inspiration for improving the robustness of a model arises from the denoising
idea: we add noise to the input and then remove it to recover the original input. Denoising auto-
encoders (DAESs) are such a type of neural networks that marries the idea of auto-encoding
with the idea of denoising. First, noise is added to the input vector in a stochastic manner. This
can be described as a process of generating a noisy input Xn.ise given the original input x:

Xnoise ™~ Prnoise(xnoise|x) (2.106)

where Pryise(+) is a distribution for sampling X,0ise. For example, we can follow the method
presented in Section 2.5.5 and take the noisy input as a multivariate Gaussian variable:

Xnoise ~ Gaussian(x, 02) (2.107)

where Gaussian(u, 02) generates Xpoise Via a Gaussian distribution with the mean p and the
variance o2. Eq. (2.109) introduces an additive noise to the input. Subtracting x from the
mean, we have

Xpoise = X18 (2.108)
g ~ Gaussian(0,0?) (2.109)
a dp, X dg matrix:
Jacobian = oh
ox
_ [@ oh]
- Oxq Bmdm
ohn . O
Oxq Oxq,
_ S (2.103)
Ghdh Ohdh’
O T Oz,

3For a matrix A € R%* %= the Frobenius norm is given by the equation:

Al = A7, (2.104)
ij

4L et X be a metric space with a metric d. Given a function f(-) from X to X, f(-) is a contraction mapping if
and only if there is a number € such that for any x1,z2 € X:

d(f(z1), f(z2)) < e-d(z1,22) (2.105)

114 Chapter 2. Foundations of Neural Networks

Training Objective:

(é,d}) =argmin) L(() » ())

K Corrupted Input \\

Input x Noise & Xpoige =X+ & Code h Reconstruction x
7 0 7 (Bottleneck) 7
3 0 3 0 3
"I .+ |?| = |?| Encoder 3 Decoder 1
2 . E h= - X = Dec,(h) | ©
0 S S Ency (Xnoise) -8 :
1 1 2 5

Figure 2.17: The structure of a denoising auto-encoder. An input x is first corrupted into a
noisy or corrupted input Xyeise. Then, it is passed through an encoder to form a code h. Then,
the code is passed through a decoder to form a reconstructed input X. The training is performed
by minimizing the loss between x and X. This process is termed “denoising” because it tries to
remove the noise from X;,ise and recover the original input x.

Sometimes, this process is called the corruption of the input, and x.ise is called the
corrupted input. Aside from additive Gaussian noise, there are a few different ways to corrupt
the input [Vincent et al., 2010]. One of the popular methods is to zero some of the entries
of x. For example, we can set each entry to 0 with a pre-defined probability. This is also
called masking noise. Another method is to use salt-and-pepper noise or impulse noise for
corruption. It randomly chooses some of the entries, and sets each of them to a minimum or
maximum value with a pre-defined probability. Different types of noise are applied to different
applications of auto-encoders. For example, the masking noise is popular in training language
models, and the salt-and-pepper noise is more commonly used in image processing.

Then, the corrupted input X,,ise is fed into an encoder-decoder network, and the network
produces a reconstructed input X = Dec(Enc(Xpoise)). The training process is regular. We
reuse Eq. (2.95) to minimize the loss of replacing x with X. Thus, we can rewrite Eq. (2.95) to
adapt the objective to the denoising case:

m

(é,@) = argminZL(x(i),Decw(EHCQ(X(i)))) (2.110)

noise
(va) =1

Eq. (2.110) differs from Eq. (2.95) only in that the input of the auto-encoder is Xyise instead
of x. In other words, we denoise the corrupted input to recover the original input. See Figure
2.17 for the structure of denoising auto-encoders.

Note that both contractive/sparse auto-encoders and denoising auto-encoders can be thought

2.6.3

2.6 Unsupervised Methods and Auto-encoders 115

of as ways to improve the robustness of auto-encoders. Their difference lies in that they
regularize the training at different points of the model. Contractive auto-encoders aim at
improving the robustness of encoding, that is, the representation is learned to be not so
sensitive to small perturbations to the input. Denoising auto-encoders, on the other hand,
aim at improving the robustness of reconstruction. It affects both encoders and decoders
simultaneously. In some sense, denoising auto-encoders are direct applications of noisy
training to auto-encoders (see Section 2.5.5). It is of course difficult to say which models
are better. For example, contractive auto-encoders have more direct guidance on learning the
representation, which is what we are concerned the most about. The training of denoising
auto-encoders, though has an indirect effect on encoding, receives additional denoising signals
from the decoder. This offers a new view of robust training: a robust representation can be
learned in both where it is generated (the denoising encoder) and where it is applied (the
denoising decoder).

Variational Auto-encoders

variational auto-encoders (VAEs) were not initially proposed to model the encoding problem,
although it is termed an “auto-encoder”. They are typically used to generate new data similar
to observed data, hence having very different formulations from the classical auto-encoders we
mentioned above. In statistics and machine learning, variational auto-encoders are more often
viewed as instances of variational Bayesian methods and used to perform efficient statistical
inference over latent variables when the posterior probabilities of these variables are intractable
[Kingma and Welling, 2014; 2019]. On the other side, variational auto-encoders, implicitly
or explicitly, deal with what we do in inducing the underlying representation of an observed
object. We therefore involve it in this section for a relatively complete discussion.

We begin with a generative story describing how each data point is generated. Suppose
that, for an observed sample x in our dataset, there is an unobserved latent variable h that
describes x. Now we intend to develop a probabilistic model to model the generation process
of x, say, estimating the probability Pr(x). This can be obtained by computing the marginal
distribution:

Pr(x) = JPr(x,h)dh (2.111)

where we explicitly introduce the latent variable h into the inference of x. To solve Eq. (2.111),
we use a model p,,(x,h) to approximate Pr(x,h) (i.e., p,,(x,h) ~ Pr(x,h)), and we have

pu(x) = Jpw(x,h)dh (2.112)

where p,,(x,h) is a probability density function parameterized by w. We replace the left-hand
side of Eq. (2.113) with p,,(x) to emphasize that the probability is determined by the model
pw(+). There are generally many ways to define p,,(x,h). Here we can simply think of it as a
neural network.

116 Chapter 2. Foundations of Neural Networks

Then, we can rewrite Eq. (2.113) by using the chain rule:

pu(x) = Jpw(h) - pw(x|h)dh (2.113)

where p,,(h) is the prior over h, e.g., a Gaussian prior. The conditional probability p,,(x|h)
describes how likely x is observed given the latent variable h. To model this generation
process, p,,(x|h) is often assumed to be a Gaussian distribution that is parameterized with its
mean /i, and variance op:

pw(x|h) = Gaussian(uy,o0p) (2.114)

where 41, and o, are determined by a decoding network Dec,,(-) (we will explain later on why
it is called “decoding”):

(1ps0p) = Decy(h) (2.115)

However, Eq. (2.113) is still intractable even though p,,(h) and p,,(x|h) are both tractable,
because it is impossible to summing over all possible h’s. This also leads to an intractable
posterior:

pw(hx) = W (2.116)

It looks like we are stuck with p,,(x) and p,,(h|x)! Variational auto-encoders address this
issue by approximating p,, (h|x) with a tractable posterior gy (h|x):

go(h[x) =~ pu(hlx) (2.117)

where 6 is the parameter of the new model. Like Eqgs. (2.114-2.115), gg(h|x) is defined as
another Gaussian distribution:

go(h|x) = Gaussian(pg,0q) (2.118)
(tg,04) = Ency(x) (2.119)

where Ency(+) is the encoding network that reads x and generates the mean and variance of
the distribution gy (h|x). This is interesting! We now have a feasible path to compute Pr(x):
we first sample a latent variable h via gy (h|x), and then compute p,,(x) via the product of

2.6 Unsupervised Methods and Auto-encoders 117

pw(h) and p,(x|h). In this case, the log-scale probability of the observation is defined to be

logPr(x) = Enwg,(nx) logpw(x)
_ Pw(h) - po(x[h)
= Fran 18T Ty
Pw(h) - pu(x/h) go(h[x)
= Ei. 1o :
hao(hx) 98) "hix) ga(h]x)

qo(h[x) pw(h) - py(x|h)
— Epw i 10 By i log PN PIXIR) 5 400
h~gg (h|x) gpw(h|x) h~qy(h|x) 108 qo(h[x) ()

The first term of the right-hand side of Eq. (2.120) is the KL divergence (relative entropy)
between gy(h|x) and p,, (h|x), i.e.,

_ go(h|x)
D(gp(h[x)[|pw(h]x)) = Ethg(h\x)logpw(h‘X) (2.121)
Thus, given D(gg(h|x)||p,(h|x)) > 0, we have!®
Pw(h) - pu(x[h)
logPr(x) > Epoo, (b log —— 22
_ pw(h)
= Enegnlx) 10gpw(><\h)+logq9(h|x)
= Enhgy(nlx)108pw(x|h) + D(ps,(h)[|gs(h|x)) (2.122)

The right-hand side of Eq. (2.122) is a lower bound of the likelihood logPr(x). It
is also known as the evidence lower bound (ELBO). The first term of the ELBO can be
approximately computed by sampling different h’s. Also, computing the second term is not
difficult because there is an analytical form for D(p,,(h)||gs(h|x)) if the forms of p,,(h) and
qo(h|x)) are given. Let L(x,6,w) denote the negative ELBO. Then, the training process of a

variational auto-encoder can be framed as minimizing L(-) over a number of observed samples
{xM . x(m}.

0,0) = i mL @ g, (2.123)
(0,w) ar(%’gl)m; (x w)

Note that, because sampling h from gy (h|x) is a non-continuous operation, Ey,q, (h|x) l0g . (X|h)
is not straightforwardly differentiated. To fit the training of auto-encoders in standard back-
prorogation, a common way is to use the so-called reparameterization trick. Here we skip
the details and refer the reader to a few papers for more information [Kingma and Welling,
2014; Doersch, 2016].

Figures 2.18 illustrates how a variational auto-encoder works. It presents us with a two-step
generation process:

5The KL divergence between p and q is zero only if p = ¢, and is positive otherwise.

118 Chapter 2. Foundations of Neural Networks

Training Objective: (6,&) = argmin > L(x®,0,w)

(fw) i=1
Encoding Step: gg(h|x) Decoding Step: p,,(x|h)
Hp
Input x Z pa Inputx
. Code h . 1 >
3 0 2 . 3
2 .1
11 Encoder > | Decoder |, | | 1
> | Ency(x) 1| Dec,(h) — | 2
0 8 — 1 0
1 T+ R 1
sampling
B samplingT
Gaussian(Hq > p7) Gaussian(fp > p3)

Figure 2.18: The generative story of a variational auto-encoder. For an input sample x, we
generate a latent variable h by using an encoder gy(h|x). In the encoding step, a neural
network Encg(-) is first used to produce the mean and variance of a Gaussian distribution, say,

ftq and 02. The latent variable h is then drawn according to Gaussian(uq,ag). After that,

we regenerate the original sample x by using a decoder p,,(x|h). In the decoding step, like
the generation process in the encoder, a neural network Dec,,(+) is used to generate the mean

ftp and variance 0]2, of Gaussian (s, 012,). The same input x is spitted out by sampling from

Gaussian (g, 07).

* Encoding. For an input sample x, we sample a latent variable h from gg(h|x). This
involves an encoding network Encg(x) that generates the mean /1, and variance 03 of
the Gaussian distribution gg(h|x). The latent variable is then generated by sampling
from Gaussian(,, 02).

* Decoding. For the latent variable h, we sample the original input x from p,,(x|h). It
follows again a Gaussian sampling process: a decoding network Dec,,(h) is used to
determine the mean 1, and variance 012, of the distribution. x is generated by following
Gaussian(,, O'g).

Sometimes, gp(h|x) and p,,(x|h) are called an “encoder” and a “decoder”, as they try to
“map” an input to a representation and then “map” it back to the input. However, gg(h|x) and
pw(x|h) themselves imply some non-deterministic models, that is, they output the probability
density functions of the variables rather than point estimates. An important consequence of

2.7

2.7 Summary 119

this result is that variational auto-encoders do not tend to find the “best” representation for
the input. At first glance it sounds weird as every model we have talked about so far can
give a fixed value output. This, however, is the case of the Bayesian inference — we only
learn a distribution over possible values of a latent variable. On the empirical side, if you
want to obtain something like a good representation, it is fine to just sample a value from that
distribution you developed. It would be a high probability that you get a not-so-bad outcome if
your model works well [Knight, 2009].

In practice, the main use of variational auto-encoders is in generation but not representation.
At test time, provided the optimized parameters 6 and w, the encoder (i.e., g; (h|x)) is removed,
and the decoder (i.e., p;(x|h)) works with randomly generated h’s. More precisely, we sample
a latent variable hy,, from a Gaussian distribution, and infer a sample Xew by pg (X|hpew)
as usual. We will see in the subsequent chapters that many NLP problems can be categorized
as generation problems where sequential or hierarchical data objects are generated on the
condition of some given data objects or latent variables.

Summary

In this chapter we have talked about what a neural network is, as well as a few basic architec-
tures, which are commonly used as building blocks in constructing powerful deep learning
systems. Also, we have talked about how to train neural networks, how to regularize the
training process, and how to apply neural networks to feature learning in an unsupervised
manner.

But neural networks and deep learning are wide-ranging topics and all of our discussions are
a little “peek” into them. For a more comprehensive introduction to these topics, Goodfellow
et al. [2016]’s book may be a good choice. It also covers several advanced techniques, such
as deep structured models and randomized methods, for developing state-of-the-art systems.
However, as always, there is a big difference between knowing what a technique is and being
fluent with using it in solving real-world problems. So, for practitioners who want to apply
neural networks and deep learning in even simple situations, there are a number of books on
implementation details of deep learning systems [Géron, 2019; Zhang et al., 2021; Chollet,
2021], and open-source projects that provide code-bases for reference!®.

In the following chapters, we will dig into how to use neural models to address NLP
problems. Along the way, we will see how to learn the representation of words and sentences
using the methods we have discussed so far (Chapters 3-4), and how to model different NLP
problems by using several interesting neural network-based methods, including the attention
mechanism and Transformers (Chapters 5-6), pre-training (Chapter 7), large language models
(Chapters 8-10), and so on.

1URLs to a few popular online tutorials: https://pytorch.org/tutorials, https://keras.io/
examples/nlp,and https://www.tensorflow.org/tutorials

https://pytorch.org/tutorials
https://keras.io/examples/nlp
https://keras.io/examples/nlp
https://www.tensorflow.org/tutorials

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6

Basic Models

Words and Word Vectors 123
Tokenization

Vector Representation for Words

Count-based Models

Inducing Word Embeddings from NLMs

Word Embedding Models

Evaluating Word Embeddings

Summary

Recurrent and Convolutional Sequence Models
171

Problem Statement

Recurrent Models

Memory

Convolutional Models

Examples

Summary

Sequence-to-Sequence Models 211
Sequence-to-Sequence Problems

The Encoder-Decoder Architecture

The Attention Mechanism

Search

Summary

Transformers, 269
The Basic Model

Syntax-aware Models

Improved Architectures

Efficient Models

Applications

Summary

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 3

Words and Word Vectors

Words are basic units of language [Jackendoff, 1992]. Most language systems that people use
to express their feelings and communicate with others involve creating, mixing, and combining
words in some way. Before understanding how a word is used in forming larger language units,
it is worth first understanding what a word is. This involves two fundamental questions:

e What is the surface form of a word?

* What is the meaning of a word?

But these questions are difficult, of course, because there are no simple rules to describe
how a word is formed and how its meaning is defined or induced. While there are a variety of
theories to answer these questions in linguistics, NLP researchers are concerned more with
two practical issues:

» Tokenization: given a string, how to segment it into a sequence of words (also called
tokens) such that these words can be used as basic units in downstream NLP tasks?

* Word Representation Learning: given a corpus, how to learn to represent each word
in some countable form, and how to enable NLP models to “compute” on top of this
representation?

One goal of this chapter is to show how a sentence is segmented in either a linguistic
or statistical manner. Specifically, we describe several approaches to tokenizing a string of
characters into words or subwords by heuristic rules or statistical models learned from data.
The other goal here is to show how words can be represented as real-valued vectors. In
particular, we present modern approaches to learning and evaluating these word vectors. The
value of this part is not on drilling on those formulas and models but on showing the core
idea of word vector representation which is the basis of many NLP systems. In the next few
chapters, we will see a natural generation of this idea to modeling more complicated problems,
such as representing sequential and tree-like data.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

3.1

124 Chapter 3. Words and Word Vectors

Chinese | PUE —HLK, FEERMPLSGRIEFEE ARNPREL —-
Output: —H/LIK/, /FEEIBINZRENFER/ NSRBI Z—
Japanese Input: FAHAREISBER T FROBs L 45,
Output: P HA/R /NI MR T/~ TR LIZE 1L 15 5]
English Input: She said, “Deep learning is not the solution to all world’s problems”.
Output: She/said/,/“/Deep/learning/is/not/the/solution/to/all/world/
’s/problems/”’/.

Figure 3.1: Tokenization for different languages (slash = word boundary). For Chinese and
Japanese where there are no delimiters between words, tokenization is often called word
segmentation.

Tokenization

In computer science and related fields, the term foken can be used in many different ways.
Here we simply think of a token as a word in linguistics, although it can be something different
(see Section 3.1.4). In NLP, tokenization or segmentation is a task related to morphological
analysis [Aronoff and Fudeman, 2011]. While morphological analyzers or parsers are generally
used to study the internal structure of words, tokenization is concerned with how sentences are
broken down into words. It appears that we need to know how words are composed if we want
to know how sentences are formed by words. Things are even more interesting because the
variety of languages makes it difficult to find a general system to describe the morphology of
every language. For example, analytic languages (such as Chinese) have little inflection, and
rely on word order to convey meaning. By contrast, synthetic languages (such as French) may
have rich inflection and the meaning of a word is highly influenced by morphology.

On the other hand, dividing sentences into smaller linguistic pieces is important in many
NLP tasks, even though many of the world’s languages have little morphology. For example,
Chinese is a morphologically simple language that has no explicit word boundaries. While it
also makes sense to take characters as units in understanding what a Chinese text is talking
about, it is more desirable and reasonable to consider larger units in processing the text. Note
that, even for languages having delimiters between words, such as English, we still have to
tokenize sentences such that they are standardized when serving as the input and/or output of
an NLP system.

In this section, we skip the discussion on what exactly a word is in morphology and syntax,
but simply view tokenization as a task of adding word or token boundaries to a given string
(see Figure 3.1). We will show that a sentence can be broken down into words or tokens in
either a heuristic or statistical manner. Note that this process is designed to produce some units
that can ease the processing of languages in NLP systems, not necessarily to make strictly
linguistic sense.

3.1.1

3.1 Tokenization 125

Tokenization via Rules and Heuristics

A common and simple approach to tokenization is to identify every word in a sentence by
applying a set of pre-defined rules. In general, these rules are linguistically motivated and
reflect our prior knowledge of what the form of a word should be. For example, consider the
English example in Figure 3.1. We can define the following rules for tokenizing the sentence:

* Words do not contain spaces. In this sense, we can split the sentence into “word
candidates” with space.

* Every word candidate that is made up of English letters only (i.e., a-z and A-Z) is a word.

* Every punctuation mark (i.e., quote, comma, period, etc.) should be isolated to form a
word.

* ’sis a word, indicating noun possessive.

This might be one of the smallest rule sets we can use in English tokenization. Surely,
more rules can be added to cover more linguistic phenomena, e.g., words with dashes, words
containing non-English letters, and so on. However, there are no standards to define such
a set of rules. In practice, and particularly in NLP applications, we want a minimal set of
rules to deal with most problems, and the tokenization is usually implemented by a number of
regular expressions. Here we will not discuss these rules and regular expressions in detail,
but refer the reader to a few textbooks for more details [Lawson, 2003; Friedl, 2006; Jurafsky
and Martin, 2008]".

Also, it is common to normalize the text before tokenization so that the input of the tok-
enizer is canonical. For example, for English and other alphabetic languages, normalization
or canonicalization refers to a process of lowercasing words, normalizing character represen-
tation (e.g., Unicode characters), and so on. In addition, we can map different forms of a word
to the same form for further generalization of the tokenization. A simple way to do this is to
conflate all inflected forms of a word into its base form. In linguistics, the base form of a word
is called lemma, and the process of mapping words to lemmas is called lemmatization. Here
are some examples of lemmatization.

learn — learn
learning — learn
learns — learn
best — good

There are words that correspond to two or more different lemmas (often with different part-of-
speeches). In this case, we should select the correct lemma according to the context. In other
words, lemmatization is context-dependent.

!Tokenization scripts can be found in many open-source projects, such as Moses [Koehn et al., 2007]
(https://github.com/moses—smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl) and the tokenizers in SacreBLEU (https://github.com/mjpost/sacrebleu/
tree/master/sacrebleu/tokenizers).

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers

3.1.2

126 Chapter 3. Words and Word Vectors

Original | She said, “Deep learning is not the solution to all world’s problems”.
Normalization | she said, “deep learning is not the solution to all world’s problems”.

Tokenization | she/said/,/“/deep/learning/is/not/the/solution/to/all/world/’s/problems/”/.

Lemmatization | she/say/,/“/deep/learning/be/not/the/solution/to/all/world/’s/problem/”/.
Stemming | she/said/,/“/deep/learn/is/not/the/solut/to/all/world/’s/problem/”/.

Figure 3.2: Normalization, lemmatization, and stemming of an English sentence. In normal-
ization, the whole sentence is lowercased. In lemmatization, every word is lemmatized and
rewritten as its lemma. In stemming, the suffixes of some words are removed.

Closely related to lemmatization is stemming, which represents a word as its stem. Like
lemmas, a stem is some base form of a word. However, unlike lemmas, a stem is not necessarily
a valid word, although there are many words whose lemmas and stems are identical. Another
difference from lemmatization is that stemming is performed on individual words, without the
need of context for disambiguation. So, stemming is context-independent. There are several
efficient algorithms for stemming. A popular one is suffix stripping [Porter, 1980]. It simply
removes the suffixes ing, ed, ion, etc., like these

remove — remov

removing — remov

removal — remov
best — best

For more examples, Figure 3.2 shows normalization, lemmatization, and stemming results for
an English sentence.

It is worth noting that the above methods are typically implemented using regular expres-
sions, dictionary lookups, and additional heuristics. While in our little exploration here it
seems that tokenization is not so difficult, much more work is needed to make it practical.
In particular, if we deal with languages with a non-alphabetic writing system, or languages
without explicit spacing between words, then tokenization would be a hard problem, and in
that case, using simple rules would not be a good strategy. In the following subsections, we
will reframe tokenization as a machine learning problem where the way to tokenize or segment
sentences is learned from data. These methods are language-independent and can be applied to
a wide range of tokenization or segmentation-like problems.

Tokenization as Language Modeling

Now let us move to statistical modeling of the tokenization problem. For ease of discussion, in
this subsection only languages (or more precisely writing systems) without word boundaries
are considered, but the method should be understood to cover other problems where delimiters
are used to indicate the end or beginning of a word. Let x = z;...x; be a string of characters,

3.1 Tokenization 127

and y = y1...ym be a sequence of words or tokens. We would say that y is a tokenization result
of x if y defines a segmentation on x. Consider the following Chinese sentence:

x = HEEFERARNEEL—-
We can define a segmentation on the sentence, for example?,

y = LB AR~ -
— |:“ 1;}L%§§)}ili%’, 13 7\%” 13 }\%” 13 E/‘j” 13 72}3}:‘_}\” 13 Z_.” oo (31)

In this way, tokenization can be framed as a problem of mapping x to y. Given an input string,
the output is the most likely segmentation:

y = argmax Pr(y|x)
y

= argmax logPr(y|x) (3.2)
y
Eq. (3.2) describes a prediction model we have been referencing several times in this book.
However, the problem we are dealing with is easier because y contains the information of x,
and we can remove the condition from Pr(y|x) in the arg max operation:

A

y = argmax logPr(y)
y

= argmax logPr(y1,...,ym) (3.3)
y

It is easy to check that Eq. (3.3) in fact describes a language modeling problem. There
are a few different ways to estimate the joint probability Pr(y1,...,¥m). A simple method is to
rewrite log Pr(yy, ..., ym) into a sum of log-scale conditional probabilities:

logPr(y1,....ym) = logPr(y1)+logPr(yz(y1) + ... +1ogPr(ymly1; ... ym-1) 3-4)
Each conditional probability Pr(y;|yi,...,y;—1) can be approximated by
Pr(yilyr, .. yi-1) = Pr(ylyi—ns1,-,%i-1) (3.5)

that is, the generation of y; only depends on the n — 1 previous context words. To compute
Pr(vi|¥i—n+1,---,¥i—1), we can either use the relative frequency methods or neural networks
(see Chapter 2).

Now we can think of tokenization as a supervised learning problem. The process is outlined
here:

* Prepare some sentences that are correctly segmented.

2Following the notation used previously, we use bothy =y1...ym andy = [y1 ym] to denote a sequence
of variables.

128 Chapter 3. Words and Word Vectors

* Learn a language model Pr(y) on these labeled sentences.

* For a new sentence, find the “best” tokenization y that maximizes Pr(y), as in Eq. (3.3).

While this procedure follows a standard pipeline of supervised learning, there are several
practical issues we have to iron out. First, the language model requires a vocabulary from
which y; can choose a value, but new words are always around. To handle them, one way
is to segment an unknown substring into characters, that is, we treat characters as words if
the substring yielding these characters is not contained in the vocabulary. An alternative is to
take into account all substrings that are not covered by the vocabulary, and replace them with
the <unk> tag. The <unk> trick is widely adopted in state-of-the-art language models and is
usually helpful.

Second, the language model described above has a bias towards short sequences because
Pr(yi,...,ym) would be large if m is a small number. A general way to mitigate this bias is to
introduce a length reward (or length bonus) to the model, for example,

y = argmax logPr(y)+\-m (3.6)
y
or
logP
y = argmax 08TTY) l;\(y) 3.7
y m

where \-m and m” reward long sequences and A > 0 is a hyperparameter controlling how
much we rely on the reward in assessing the goodness of y. Interestingly, it is found that the
length bias is not a big problem with tokenization in practice because the variance in length is
small for those “good” tokenization results. For example, using a unigram language model
(i.e., n = 1) without any length reward works well in many real-world applications. We will
see a few examples in Section 3.1.4.

Third, performing arg max is difficult because there are exponentially many tokenization
candidates. However, the use of language models here enables efficient search algorithms.
Consider, for example, applying a unigram language model to tokenization. For the input
string x, we keep, at each position j of x , a state that describes the probability of the best
tokenization on z;...x; (denoted as p(j)) as well as the last word of this tokenization. At
position j + 1, we create a new state and compute the probability of the best tokenization on

T1...Tj4+1 by

p(j+1) = 112?;;] p(i) - Pr(ziti...xj)
= nax p(i) - Pr(wyit1,;) (3.8)

where Pr(wj;;; ;) is the probability of the word spanning z;1...z;. On the algorithmic side,
Eq. (3.8) describes a dynamic programming method that has a time complexity of O(I?) for
an input of length [. For the final output, we can trace back from the final state and dump the
word sequence along the path of the optimal tokenization.

3.1.3

3.1 Tokenization 129

Note that the methods here are generic and can be applied to tokenization for other
languages. For example, when applying it to English, we only need a slight update on the
format of the input: the input is not a character sequence but a sequence of the smallest possible
pieces separated out by punctuation and spaces. For example, for the sentence Is this Tom’s
laptop?, we have

x = |Is this Tom ’ s laptop ?] 3.9

Then, the tokenization process can proceed as in Egs. (3.2-3.7).

Tokenization as Sequence Labeling

One of the major ways by which NLP researchers group together consecutive linguistic pieces
is through tagging the sequence with a grouping-inspired label set, often known as sequence
labeling. Although we limit ourselves here to the problem of grouping characters to words, as
we will see in the following chapters, such a method is a good solution to many NLP problems,
such as part-of-speech tagging, named entity recognition, and so on. Since the idea of sequence
labeling has been discussed in Chapter 1, we present here how it is adapted to the tokenization
task.

The label sets used in tokenization are regular. The simplest of these is the “IB” set. The
“I” label indicates a linguistic piece inside a word, and the “B” label indicates the beginning
of a word. The label set can be enriched by adding the “E” label (i.e., the ending of a word)
and/or splitting the “B” label into sub-labels (e.g., B; and B indicate the first and the second
linguistic pieces of a word) [Zhao et al., 2006]. Given an input sequence x and a tokenization
result y, transforming y to the label sequence is fairly simple. Consider again the example
used in the previous subsection. We can label the sequence in different formats:

x flL 2% ® ¥ 2 AN X m B B 2z — .

y: P& B OE B A X B B B Z —

4B B 1 1 1 B B I B B I B I B

{IiIBE} B 1 I E B B E B B E B E B
{IB;,B,E} By B, 1 E By B, B, B By By By By By

Since the label sequence can be treated as another form of the tokenization, we can restate
the problem as finding the best label sequence given an input:

¢ = argmax logPr(c|x) (3.10)
C

where ¢ = ¢;...¢; is a label sequence. Many methods have been proposed to model Pr(c|x). A

3.14

130 Chapter 3. Words and Word Vectors

classic way is given by rewriting Pr(c|x) using the Bayes’ rule:

o>
|

P P
arg(ljnax logr()ﬁf()x)r(c)
= argmax logPr(x|c)+logPr(c) (3.11)
(¢

In this model, Pr(x) is a constant for all ¢’s, and thus can be removed from w in

search. Pr(x|c) is the probability of generating the input x (i.e., observations) given the label
sequence c (i.e., latent variables), and Pr(c) is a language model defined on the label sequence.
Simplifications are in general required for a tractable model. For example, we can make a
Markov assumption that the choice of ¢; is dependent only on the choice of ¢;_;. This leads
to the hidden Markov model (HMM) which is widely used in generative modeling for NLP
problems.

An alternative method is discriminative modeling. A common idea is to treat sequence
labeling as a series of independent classification problems. For example, we can develop a
local classifier that conditions the prediction of ¢; on a set of features around position ¢. In
more sophisticated models, such as conditional random fields (CRFs), the context of the
entire sequence can be used in the prediction. While it may be interesting to go more deeply
into the details about these sequence labeling models, we simply skip them to make the topic
in this section more concentrated. Instead, the reader is referred to [Kupiec, 1992; McCallum
et al., 2000; Lafferty et al., 2001] for thorough discussions of how these models are developed
and applied. In addition, for a comparison of generative modeling and discriminative modeling,
we refer the reader to Chapter 1.

Learning Subwords

It is a commonly held belief that words are the basic units in language use. This does not mean
that words are the smallest linguistic units. Rather, words can be broken down into smaller
pieces that have meanings, such as morphemes. It is this which accounts for the important
role of words in the syntactic hierarchy of a language, e.g., words are made up of morphemes,
and phrases and sentences are made up of words. It is therefore natural to think of words as
distinct components of languages that have some function in forming the structure or meaning
of a phrase or a sentence. In NLP, however, viewing sentences as sequences of words is not so
desirable sometimes. A problem is that some words are rare, making it difficult to adequately
learn a model because of data sparseness. For example, uncopyrightable is an English word
that rarely occurs. An NLP system may simply recognize it as an unknown word (i.e., an OOV
word), although we can get the meaning of this word by decomposing it into parts: un, copy,
right, and able. Another problem is that linguistics-based tokenization standards somewhat
limit the use of computers for automatically learning the way to segment the sentence into
units in a machine learning sense. In this case, it is helpful to consider identifying “new” words
that are not strictly constrained by linguistics but are better suited to NLP systems.

3.1 Tokenization 131

1. Byte Pair Encoding

Byte Pair Encoding (BPE) is one of the most successful methods to learn subword units from
a set of word sequences [Sennrich et al., 2016b]. While the BPE approach stems from data
compression [Gage, 1994], it is more often used in NLP as a solution to the open vocabulary
problem. The basic idea of BPE is that we repeatedly replace the most frequent pair of bytes
in the data to form a new byte. As a result, common bytes are often involved in merging
substrings of bytes, and rare bytes are often isolated and considered unique units. The outcome
of BPE is a byte vocabulary that can be used to encode new data.

In NLP, a byte can roughly correspond to a character. And each entry of the vocabulary is
a character sequence, called a symbol or subword. BPE begins with splitting a given text into a
sequence of characters, for example, we can add a space after each occurrence of an English
letter or a punctuation mark. This in general results in a very long sequence. While BPE itself
has no restrictions on input length, a more common way is to prevent cross-word symbols for
efficiency considerations. Thus, we can represent the text as a list of space-separated words,
each being associated with the frequency of the word. For example, consider a word list:

flow#:2
blow#:2

flat#:1
flag#:4

where # is a special symbol indicating the end of a word®. From this word list, we can collect
an initial vocabulary:

f:7 b:2
1:9 a:5
0:4 t:1
w:4 g:4
#:9

Then, we count the occurrences of each symbol bigram:

3Instead of taking # as a separate symbol, another way is to concatenate # with the last character in each word,
like this

flow#:2
blow#:2
flat#:1
flagH#:4

where “w#”, “t#”, and “g#” represent characters that occur at the end of a word.

132 Chapter 3. Words and Word Vectors

f1:7 ag:4
l a:5 g#:4
lo:4 bl:2
ow:4 at:l
w #:4 t#:1

We merge the most frequent symbol bigram “f I’ to a new symbol “fl” and replace in the
word list each occurrence of “f 1” with “fl”:

flow#:2
blow#:2
flat#:1
flag#:4

Accordingly, the symbol “fl” is added to the vocabulary:

f:7 b:2
1:9 05
0:4 21
w:4 g:4
#:9 fl:7

Then, this process is repeated again. This time, we merge the symbol bigram “fl a” and
create a new symbol “fla”. As such, we have a new word list:

flow#:2
blow#:2
flat#:1
fla g #:4

and a new vocabulary:

—r

fla:5

—

g:
fl:

N N N =IRN |
<N o= N

*+ £ o

We can run this process a certain number of times. The more times we perform the merge
process, the larger the vocabulary is. The entries of the final vocabulary are reordered by
symbol frequencies. For example, if we set the number of merge operations to 6, we will have
a vocabulary, like this:

3.1 Tokenization 133

1:9 fla:5 ow# : 4
#:9 o:4 flag : 4
f:7 w:4 flag# : 4
fl:7 g:4 b:2
a:5 ow : 4 t:1
It corresponds to the word list:
fl ow# :2
b 1 ow#:2
flat#:1
flag# : 4

Having obtained a vocabulary like above, we can apply it to tokenize new words. The
subword tokenization follows the same procedure of merging symbol bigrams as that used in
building the vocabulary. Given a BPE vocabulary, we first segment the input text into character
symbols. Then, we examine each symbol bigram in the sequence, and merge the one that has
the highest frequency in the vocabulary. We repeat this operation until there are no further
merges. Consider, for example, the following text:

tow a flag
It is first transformed into a character sequence:
tow#a#flag#

By using the BPE vocabulary we have obtained, we can do BPE merging on this sequence,
like this

tow#a#flag#

f1=1 tow#Ha#flag#
fla= fla tow#at#flag#
0 W= OW

tow # a # fla g #

oW A= owd, tow# a # fla g #

—— > t ow# a # flag#

This subword sequence can be used as some input and/or output of a downstream NLP
task, such as machine translation. Sometimes, we want to map subwords back to words. This is
simple: we keep the space after each occurrence of the # symbol, and remove all other spaces
and #. Also note that the BPE method we describe here requires word-segmented inputs, that
is, we need a pre-tokenizer to roughly tokenize the input sequence into some units. This can be
done by using the methods presented in Sections 3.1.1-3.1.3.

134 Chapter 3. Words and Word Vectors
2. WordPiece

The WordPiece method is very similar to the BPE method in that it first divides the input text
into the smallest symbols and then progressively merges pairs of consecutive symbols to form
larger symbols [Schuster and Nakajima, 2012]. The difference between them is only in the
way of selecting which symbol bigram to merge. In BPE, we merge each time the symbol
bigram with the highest frequency. Let (z;,z;41) be a bigram in the sequence x. The merge
rule of BPE can be described as

(z;,7;,,) = argmax count(z;,Tit1) (3.12)
1€[1,|x|—1]

where the function count(z;,z;4+1) returns the frequency of (z;,z;+1) in the corpus, and
(z;,7;,,) is the bigram with the highest frequency.

The WordPiece method, instead, adopts a maximum likelihood criterion for bigram selec-
tion. More precisely, it merges the bigram so that the likelihood of the data is maximized. This

can be formalized as:

PI‘({KZ', a;i+1)

(z;,7;,,) = argmax log—— """ _
" iefx-1] Pr() Pr(zis)
= argmax [logPr(x;,xiy1)—log(Pr(z;) Pr(ziy1))] (3.13)
1€[1,]x|—1]

log Pr(x;,zit1) — log (Pr(z;) Pr(z;4+1)) describes the increase in log-likelihood of the
text when we replace consecutive symbols (x;, ;1) with a single symbol 2;z;,1*. Thus,
applications of such a merge rule produce a sequence of coding steps, each of which increases
the likelihood a bit on top of the last step. The outcome of this process is a code book (i.e., a
vocabulary) by which we can define the most likely code sequence for the given text.

3. SentencePiece

Both the BPE and WordPiece methods require that the input text is pre-tokenized in some
way. This makes it somewhat complicated to develop a tokenization system. As an alternative,
SentencePiece is a more general method that deals with raw texts and considers all characters
(including spaces) in tokenization [Kudo and Richardson, 2018]. The main idea of Sentence-
Piece is to scale down a big vocabulary so that the unigram probability of the text is minimized
at some level of the vocabulary size®, called the unigram method [Kudo, 2018].

The unigram method frames subword segmentation as a unigram language modeling
problem, resembling the general form of Egs. (3.3-3.4). Let x be a sequence of characters and

“In statistics, % is called the pointwise mutual information of variables a and b. See more details

in Section 3.3.1. Another name for this is information gain. It can be interpreted by using the Kullback-Leibler
divergence or other measures in information theory (see Chapter 1).

SThe term vocabulary size may have different meanings. Here it refers to the number of entries of the vocabulary.
Sometimes, on the other hand, it is thought of as the total number of bytes used to store the vocabulary.

3.1 Tokenization 135

y be a sequence of symbols or subwords yielding x. The probability of y is given by:

lyl

Pr(y) = [[Pr) (3.14)
=1

Then, we can write the likelihood of x in terms of the joint probability of x and y:

Pr(x) = Y Pr(xy) (3.15)

YEY (x)

where the sum is over all possible tokenization results Y (x). Since y can be viewed as a
segmentation-annotated version of x, the model of Pr(x,y) provides no more information
than the model of Pr(y) and we have Pr(x,y) = Pr(y). Thus, we can rewrite Eq. (3.15) as:

Prix) = Y. Pr(y)
YEY (x)
lyl

= > [P (3.16)

yeY(x)i=1
Taking this equation, the log-likelihood of a set of strings X is given by

lyl

Pr(X) = log [T Y. JIPrw)

x€XyeY (x)i=1

]

S log [> [[Pr(w) (3.17)

xeX yeY(x)i=1

If we consider — Pr(X) as a loss function, then the task here can be stated as finding the
best estimate for each unigram probability Pr(y) so as to make Pr(X) as large as possible.
At first glance this optimization problem looks complicated. Fortunately, there are several
powerful tools to solve it. A popular method is to use the Expectation-Maximization (EM)
algorithm [Dempster et al., 1977], which is commonly used when one tries to find a statistical
model that maximizes the likelihood of the data. Note that the EM-based solution to Eq. (3.17)
is similar to those for other NLP problems, such as statistical machine translation, and has
been well discussed in those contexts. So we refer the reader to [Brown et al., 1993] for details
about these methods. In this chapter we just take EM as an off-the-shelf tool to estimate Pr(y)
given Eq. (3.17). ¢

®In EM, we can view X as an observation, and Pr(X|6) as a statistical model that describes how likely the
observation occurs. Here 6 is the model parameters that we intend to determine. EM is based on an objective of
maximum likelihood estimation, that is

6 = argmaxPr(X|0) (3.18)
0

For the model here, we can view {Pr(y)} as model parameters. We skip the derivation details about the EM

136 Chapter 3. Words and Word Vectors

SentencePiece is essentially a “pruning” method that removes low probability entries from
the vocabulary. It starts with a big initial vocabulary V. For example, we can create the initial
vocabulary by enumerating all strings with a length constraint. Typically, cross-word strings
are excluded to reduce the vocabulary size. Then, we run the following steps:

* Estimate the probability for each entry y of V' by optimizing Eq. (3.17).

» Compute the loss for each entry y of V' via the remove-one strategy, that is, the loss is
the reduction in the likelihood (see Eq. (3.17)) when y is removed from the vocabulary.

* Remove a certain percentage of entries of V' with large losses. For example, we keep
80% of the entries, and discard the rest.

The outcome of this process is a new vocabulary as well as the probability assigned to each
subword. We can repeat this process a number of times until the vocabulary size is reduced to
a desirable level.

SentencePiece differs from BPE and WordPiece in that it considers all possible subword
sequences for a given string (see the sum Zyey(x) in Eq. (3.15)). From the machine learning
point of view, this can be seen as a way of regularization, that is, we can reduce the risk of
overestimating the parameters corresponding to the single-best subword sequence that may
have errors. An alternative way is to only consider some of the subword sequences in Y (x) for
the sake of efficiency. For example, we can sample k& subword sequences according to Pr(y)
to form the candidate set Y (x).

Note that the SentencePiece method does not depend on word-separated input sequences.
While the BPE and WordPiece methods can also deal with raw text if updated, the Senten-
cePiece method explicitly takes the space and other delimiters as parts of the subwords. See
Figure 3.3 for a few tokenization results for fow a flag.

Given a learned vocabulary and the corresponding unigram probabilities, we can apply
them to deal with a new text. This is in fact a search problem: we find the most likely subword
sequence in terms of the unigram probability. As language modeling is a well-studied topic
in NLP, many search algorithms are directly applicable to the case here. For example, the

estimate of Pr(y) but directly present the result. The EM algorithm involves two steps.

» The Expectation Step (or the E-step): Given the current estimate of Pr(y) (say, Pr+(y)), we compute
the posterior Pr¢(y) for each y according to Eq. (3.14). Then, we compute the fractional count of each
subword y in the vocabulary V/, like this

vl
fcount(y) = Z Z Prt(y)ZcS(y,yi)) (3.19)
i=1

x€XyeY (x)

where 0(y,y;) returns 1 if y = y;, and 0 otherwise. Zlfjl 0(y,y;) counts the number of times y occurs in
the subword sequence y.

» The Maximization Step (or the M-step): Given the fractional counts obtained in the E-step, we re-estimate
the unigram probabilities by the equation:

_ fcount(y)
Pripi(y) = —nyev feount(y’) (3.20)

The two steps are iterated for a number of rounds until the parameters converge to some values.

3.2

3.2 Vector Representation for Words 137

subword sequence | unigram probabilities ([subword]:probability)
t/ow_/a/_flag | [t]:0.030 [ow_]:0.002 [a]:0.041 [_flag]:0.001
t/ow/_/a_/flag | [t]:0.030 [ow]:0.005 [_]:0.113 [a_]:0.093 [f]:0.041 [lag]:0.002
t/ow/_a_/fla/g | [t]:0.030 [ow]:0.005 [_a_]:0.084 [fla]:0.003 [g]:0.027
tow/_/a_/t/lag | [tow]:0.001 [_]:0.113 [a_]:0.093 [{]:0.041 [lag]:0.002
t/ow_/a_/flag | [t]:0.030 [ow_]:0.002 [a_]:0.093 [flag]:0.001

Figure 3.3: Different tokenization results for tow a flag. Every subword is assigned a probability

[Tt

that is estimated through a unigram language model. Every whitespace is replaced with *_
for a clear presentation.

methods presented in Section 3.1.2 are straightforwardly applicable here.

Vector Representation for Words

Words have meanings’. In the broadest sense, the meaning of a word is the way in which it
can be interpreted. This is something behind the surface form of a word but can be understood
by language speakers. For example, consider the following lines of text from a poem [Knight,
2018]:

There was a little sparrow

Who sat on a wheelbarrow,

And tweeted to all her friends around.
A cat with open jaws

And very pointed claws,

Spied her as he raced along the ground.

These words are not merely strings of English letters and punctuation marks but have
identifiable meanings that are known by English speakers. For example, “little” means small in
size, “sparrow” means a kind of bird, and “friends” means people who you like and trust. From
an NLP perspective, a word meaning (or word sense) is not just what the word expresses in
one’s brain but something computer-readable and computable.

TWhile we have so far discussed several linguistic elements used in NLP, such as subwords, we still use words
as the basic units in our discussion here. The methods we will present in the remaining part of this chapter could be
understood to cover other types of language units one may use in developing NLP systems, including characters,
subwords, and so on.

3.2.1

3.2.2

138 Chapter 3. Words and Word Vectors

One-hot Representation

A natural way to represent word meanings is to use language to describe them. For example,

we can find in a dictionary the above words with their ids and meanings. Some of them are®:

cat 511 A small animal with fur, four legs, a tail, and claws,
usually kept as a pet or for catching mice

her 5220 Used, usually as the object of a verb or preposition, to
refer to a woman, girl, or female animal that has just
been mentioned or is just about to be mentioned

jaws 6186 The mouth, including the teeth
ground 6402 The surface of the earth
sparrow 8331 A common, small, gray-brown bird

wheelbarrow 9954 A large, open container for moving things in with a wheel
at the front and two handles at the back, used especially
in the garden

To represent a word, the simplest idea may be to replace it with the id number in the
dictionary. In this way, each word representation is a unique number. An equivalent form to
this is the one-hot representation. It is a vector whose dimensionality is equal to the vocabulary
size. In this vector, only the entry corresponding to the word has a value of 1 and all other
entries have 0 values. For example, the word sparrow can be represented as a one-hot vector
based on its id (8331), like this

[00 .. O 1 0 .. 0 0]

Distributed Representation

However, it appears that the one-hot representation only provides the “identity” of the word
but not the “description” of what the word is. An obvious problem is that every word is
orthogonal to other words. This makes it difficult to “compute” the relationship between words
because there is no connection among the associated word vectors even though some of the
words are thought to be similar in our use of language. Here, our desire is a model in which
words are described as countable attributes and the closeness between different words is well
explained. A way to do this is to enrich the representation with the word description. Consider
again the word sparrow for example. In the dictionary, we have its meaning a common, small,
gray-brown bird. By using the tokenization and normalization methods mentioned in Section
3.1.1, this text can be transformed into a sequence of words

a common , small , gray - brown bird]

8 All these words and their meanings are found in https://dictionary.cambridge.org/.

https://dictionary.cambridge.org/

3.2 Vector Representation for Words 139

Then, we vectorize this sequence using the bag-of-words model (see Chapter 1), leading to
a new vector of numbers

(o0..1..1..1.. 1 . 1 .. 1 .. 1 .. 1 ..00]
T 1T 1T 1 T T T T
, - a bird brown common gray small

where the value of an entry is 1 if the corresponding word is present, and 0 otherwise. This way
enables the sharing of content among words. We would say that two words are similar if they
have overlaps in their word vectors. Consider a new word cuckoo. We can find its meaning in
a dictionary, e.g., a grey bird with a two-note call that sounds similar to its name. It is easy
to know that sparrow and cuckoo are two words that share something similar because they
both mark the “bird” dimension as 1 and the vector similarity between the two word vectors is
greater than 0°.

Treating words as vectors of numbers offers a general tool to represent words in various
different ways. We do not even have to explain a word vector from the viewpoint of semantics.
For example, we can introduce a new dimension into the vector to mark if the word belongs to
some syntactic category. In a broad sense, we can define an arbitrary function on each entry
of the vector and view the function’s output as a feature describing the word. For example, a
simple improvement to the above representation is to use a function counting the occurrences
of a word instead of the binary-valued function marking the presence of the word. More feature
functions can be found in Section 3.3.

Note that it is not necessary to constrain the feature functions to forms that make linguistic
sense although linguistically motivated designs of the feature functions are usually of interest
to NLP researchers. A more general form for word representation is simply a real-valued,
multi-dimensional vector. It is often called the distributed representation of a word, or the
word embedding. For example, the word sparrow can be represented as a vector like this

19 -7 3 —12 .. 201 —2.05]

In the machine learning point of view, this vector can describe some underlying attributes of a
word. These attributes may not be explainable in human understanding but can be learned from
data. One of the challenges in learning such a representation is that one can hardly measure the
goodness of a vector. In general, it makes no sense to ask whether the distributed representation
of a single word is good or not. Rather, we would like to know if the representations of a
group of words are well behaved. For example, it is a common belief that similar words should
have similar representations. So, the relationship between words is often thought of as some
“distance” between the word representations in a vector space. This leads to a number of
methods to visualize and evaluate word representations. In Section 3.6, we will give a more
detailed discussion about these issues.

9The similarity of two vectors can be measured by the cosine of the angle between them.

3.2.3

140 Chapter 3. Words and Word Vectors

On the other hand, word representations typically do not work alone in NLP systems
but are used as some intermediate states of a model. A standard approach in NLP, to learn
distributed representations of words, is to take it as a by-product of training a “big” system.
That is, the representation model works as a component of a system, and is optimized together
with other components when the system is trained in some way. This inspires a promising
paradigm of representation learning: the representation model is learned as a sub-model in
an easy-to-train system, and can be used as a plug-in for a completely different system. In
neural language modeling, for instance, we can force the model to map each input one-hot
word vector into a real-valued, low-dimensional distributed representation. These distributed
representations are fed into a neural network that predicts a probability distribution over the
vocabulary. The mapping function or embedding function is trained so as to minimize the loss
of the language model on some data (see Section 3.4). When applying the learned embedding
function, we drop all other parts of the language model and use the function to generate the
distributed representation for each word in downstream tasks. An alternative strategy is to
specifically tailor the model to the word representation learning problem. Systems of this
kind are typically not designed to deal with standard NLP problems, but with an emphasis on
specific problems in word representation learning, such as explicitly modeling the relationship
between words (see Section 3.5).

Compositionality and Contextuality

While we restrict our discussion to word representation learning in NLP, studying the meanings
of words is a traditional sub-field of linguistics. In lexical semantics, for instance, researchers
are concerned with how word meanings are defined and used, and how these meanings form
the sentence meanings. In fact, the task of learning to represent words does not concern itself
with the issue of semantics in linguistics. Instead, it provides machine learning approaches
to transforming linguistic units into computer-friendly forms. However, the semantics issue
is critical when one understands and uses a language. It is therefore still worth considering
semantics and related problems in the design of word representation models. For example,

* Compositionality. Compositionality is a common concept in semantics, logic and
related fields. It often comes out with the principle of compositionality:

The meaning of a complex expression is determined by its structure
and the meanings of its constituents.

— Szabd [2020]

This offers a useful tool to describe how the meaning of a big thing is built up from
the meanings of its parts. The principle of compositionality is fundamental and exists
everywhere in the language world. For example, when you see the phrase white cat, it is
easy to know its meaning in terms of the meanings of the constituent words white and cat.
Another example at a higher level of language use is compound sentences. A compound

3.2 Vector Representation for Words 141

sentence forms its meaning by simply connecting multiple independent clauses with
conjunctions. Note that the principle of compositionality is not a simple rule by which we
use to describe how a big item is made up of smaller ones, although researchers have tried
to define it formally [Montague, 1974]. There are even disagreements and debates on
how this principle is interpreted and how it is adequately modeled by semantical theories.
Still, if we focus on NLP problems and set aside the theoretical part of linguistics,
compositionality is a very useful property that one can make use of in system design and
evaluation. Sometimes, if one finds that a problem is compositional, it implies that there
are many good methods to address it because a complex thing can be divided into smaller
and easier things. For word representation learning, we may wish that the resulting
word representations exhibit some compositionality, in response to the compositional
nature of language. In Section 3.6, we will see a few examples, e.g., the representations
learned by neural networks show meaningful results under linear algebraic operations,
though the models are themselves non-linear. However, on the other hand, the principle
of compositionality is not the principle of everything. There are many situations in
which compositionality is not held, such as collocations and idioms. In this case, natural
languages are non-compositional. This explains why the NLP problem is so challenging.

* Contextuality. Contextuality is some sort of non-compositionality. It states that a word
may have multiple possible meanings and the “true” meaning is determined by looking

at the context preceding and/or following this word. For example, consider the following

sentences'?

They sat round the dinner table, arguing about politics.

Come to the table everybody - supper’s ready.

He came in with four shopping bags and dumped them on the table.

The table can help you evaluate the potential risks of investing in the Fund.
Building societies dominate the best-value tables for mortgages.

This table represents export sales.
In these example sentences, table is a polysemy with two meanings:

Sense 1: a flat surface used for putting things on.

Sense 2: an arrangement of items in rows, or columns, or blocks.

In other words, table is an ambiguous word. This ambiguity would be eliminated if we
consider the surrounding words. For example, when table follows dinner, it is easy to
figure out that it refers to sense 1. The ambiguity also exists when a word stems from a
few different forms or lexemes (call it a homonymy). For example, bear can be either a

10A11 these sentences are from https://dictionary.cambridge.org/dictionary/english/
table

https://dictionary.cambridge.org/dictionary/english/table
https://dictionary.cambridge.org/dictionary/english/table

3.3

3.3.1

142 Chapter 3. Words and Word Vectors

verb or a noun. Disambiguating a word for a given set of word senses has been studied
for decades in NLP and is commonly known as word sense disambiguation (WSD)
[Kelly and Stone, 1975]. However, the word representation problem discussed here
is more challenging because we usually do not have a pre-defined set of word senses
in hand. We instead want a contextual representation model that can generate a word
representation dependent on its context. Thus, it is important to take the idea that the
meaning of a word may not be constant. This makes the problem somewhat different
from what we discussed at the beginning of the section, as we no longer have a lookup
table for word representations, but a model that produces different representations of a
word in different contexts.

In the remaining sections of this chapter, we focus on learning vector representations of
words from their distributions in language use. We leave the discussion on the contextual
models for learning dense word representations to Chapters 4-6.

Count-based Models

We have framed the induction of word meanings as a problem of learning word vectors.
In this section, we proceed by assuming that the meaning of a word is determined by the
environment where the word is used. This is usually stated as the distributional hypothesis —
words are semantically similar if they appear in similar contexts [Harris, 1954; Firth, 1957].
A word representation learned under this hypothesis is also called the distributional word
representation or distributional representation''. To ease the reading, however, we will
still use the terms word vector and word representation throughout this book. Next, we
introduce several methods for modeling the distribution of words in texts, and then offer some
refinements.

Co-occurrence Matrices

In distributional semantics, words are represented with semantic models that consider various
aspects of the context. These models differ in how the context of a word is modeled, for
example, how large the context is considered, how each occurrence of a word is counted, how
the dimensionality of a distribution is defined, and so on. In this section we assume, as in most
models used in NLP, that word representations are learned from a collection of documents.
A way to view a document is as a very simple way of decomposing it into a set of
unordered words. Then we can think of each occurrence of these words as an independent
context indicator. In this way, the distribution of a word in its context can be described as the
number of times the word co-occurs with the context words. We can do this by building a

1t should be noted that distributional representation and distributed representation are two different concepts.
A distributional representation refers to a representation that describes the distribution of language items in language
use. A related term is non-distributional representation which means something that is obtained from lexical
databases, such as the interpretation of a word in a dictionary. On the other hand, a distributed representation refers
to a vector of variables corresponding to some underlying attributes of a language item. In contrast to distributed
representation, a one-hot representation just describes the word symbol.

3.3 Count-based Models 143

co-occurrence matrix where a cell counts the number of co-occurrences of a row item and a
column item. Consider, for example, the following documents':

Doc 1 A berry is a small, pulpy, and often edible fruit.

Doc 2 In botanical terminology, a berry is a simple fruit with seeds and pulp
produced from the ovary of a single flower.

Doc 3 The term "banana" is also used as the common name for the plants that
produce the fruit.

Doc 4 Banana seeds are large and hard and spiky and liable to crack teeth.

Doc 5 A banana is an elongated, edible fruit - botanically a berry - produced by
several kinds of large herbaceous flowering plants in the genus Musa.

For each pair of words, we collect the total number of times they co-occur in these
documents, leading to a matrix, called the word-word co-occurrence matrix or term-term
co-occurrence matrix. Here is a subset of the matrix for the above documents.

flowering fruit herbaceous ... often plants seeds
berry 1 3 1 1 1 1
terminology 0 1 0 0 0 1
common 0 1 0 0 1 0
teeth 0 0 0 0 0 1
banana 1 2 1 0 2 1
simple 0 1 0 0 0 1
and 0 2 0 1 0 2

In the matrix, each row word is associated with a word vector of |V| entries. The numbers
in the entries describe how often the row word co-occurs with different context words, that
is, how a given word is distributed in different “contexts”. In a geometric sense, if two words
have similar distributions in co-occurring with the same group of context words, then the angle

between the word vectors would be small!3

. For example, if we think of these words as vectors
in a vector space, berry is closer to banana than teeth (see Figure 3.4). This geometric intuition
is the basis of many representation models. More examples will be given in Chapters 4 and 5.

A problem with this method is that the distance between words is not taken into account
although the correlation is not that strong when the context word is distant. A simple solution
18 to constrain context words in a window, called the context window or window for short
[Lund and Burgess, 1996]. For example, for each word in a document, we only count the -2

and +2 words surrounding it (i.e., a window of size 5).

12The texts are from Wikipedia.
3The angle between two vectors does nothing with the lengths of the vectors. If the vectors are normalized in
some way (e.g., by vector norm), similar vectors mean that most entries of the two vectors have similar values.

144 Chapter 3. Words and Word Vectors

distanceo

distance

banana R

X

Figure 3.4: Word vectors in a vector space that is built from the word co-occurrence statistics
on the English data from WMT 2012. All the vectors are normalized and represented as arrows.
For visualization, we project these vectors from a high-dimensional space to a 3-dimensional
space via principal component analysis. As expected, berry is closer to banana than to teeth.

Note that the word vectors learned by the bag-of-words model in Section 3.2 is a special
instance of the co-occurrence matrix. In that example, we only have one document from
which we collect context words. For each entry of a word vector, an indicator function is
used to mark the presence of the context word. In addition to the indicator and counting
functions, there are other choices for computing word vectors by examining the co-occurrence
of words. In practice, the value of an entry of a word vector can be thought of as the degree
of the correspondence between words. If two words are correlated with each other in some
context, a feature function may assign a score between them in any manner. This score does not
necessarily have to be a count, but can be an arbitrary real number. As such, the problem can
be stated as measuring the association strength between words. It is common practice to define
such a measure on the basis of correlation models. In statistics, correlation describes to what
extent two variables are associated, measured by correlation coefficients. Common correlation
coefficients include the Pearson correlation coefficient (Pearson’s r), the Spearman’s rank
correlation coefficient (Spearman’s p), and so on'*. In NLP, a widely used measure is the
pointwise mutual information (PMI) [Church and Hanks, 1990]. Let a and b be two words.
The mathematical form of PMI is given by

Pr(a,b)

PMI(a,b) = (@)) 3.21)

4Some of the correlation coefficients assume certain distributions of the data. For example, the Pearson
correlation coefficient is calculated based on two variables following normal distributions.

3.3 Count-based Models 145

where Pr(a,b) is the joint probability of a and b co-occurring, and Pr(a) (or Pr(b)) is the
probability of a (or b) occurring. These probabilities can be simply estimated on the texts by the
relative frequency method'>. Given a word a and a vocabulary of context words {b1, ..., b}
the PMI-based word vector of a is written as

e(a) = |[PMI(a,b1) .. PMI(a,bW] (3.22)

Correlation coefficients are generally used to test whether two variables are (linearly) related.
So, an alternative method is to define an entry of the word vector as the outcome of a test. For
example, the entry (a,b) chooses a value of 1, if the correlation coefficient between words a
and b is larger than a threshold, or the correlation of words a and b is sufficiently supported by
hypothesis testing.

However, modeling words as vectors of correlation scores between words somewhat limits
the scope of contextual information one may use. Another idea for word vectorization is
to consider each document as a whole and establish the relationship between words and
documents. We can do this by using the word-document co-occurrence matrix or term-
document co-occurrence matrix. For example, for the abovementioned documents, we can
build a matrix, like this

Docl Doc2 Doc3 Doc4 Doc5
berry 1 1 0 0 1
terminology 0 1 0 0 0
common 0 0 1 0 0
teeth 0 0 0 1 0
banana 0 0 1 1 1
simple 0 1 0
and 1 1 0

In the matrix, the value of entry (a,d) is defined to be the number of times the word a
occurs in the document d, giving the strength of the relationship between a and d. This is
commonly called the term frequency (TF) of a in d (denoted by tf(a,d)). Also, we can use
a 0-1 indicator function to mark the presence of the word occurrence (see Section 3.2). See
Table 3.1 for a few variations of the TF weighting function.

As a co-occurrence matrix, each row of the above matrix is the vector representation of
the row word. In addition, each column is a vector representation of a document. Recall
the bag-of-words model used in the text classification problem mentioned in Chapter 1. The
word-document co-occurrence matrix is basically the same thing as the bag-of-words model

A problem with PMI is that the measure becomes unstable when the words are rare. For example, if a very
rare word happens to appear in a document, the PMI value of this word and any other word in this document would
be unreasonably large.

3.3.2

146 Chapter 3. Words and Word Vectors

Entry | Mathematical form

1 in d
Binary | tf(a,d) = a occur.s in
0 otherwise

Count | tf(a, count(a;d)

Exponential Count | tf
log(1+ count(a;d))

count(a;d)

Normalized Count (or Frequency) | tf(a, S count(a’:d)

(a,d) =
(a,d) = count(a;d)*
Log-scale Count | tf(a,d) =
(a,d) =

Table 3.1: Functions of the term-frequency weighting scheme. count(a;d) counts the occur-
rences of the word a in the document d.

where the ordering of words is ignored but the word counts matter. Here we perform document
vectorization via this model on a collection of documents.

TF-IDF

The modeling of word-document associations is known to be important for many NLP tasks.
An improvement on using word-document relationships to build word vectors and document
vectors simultaneously is the term frequency-inverse document frequency (TF-IDF) method.
Given a set of documents D, the TF-IDF weighting scheme assigns a score to each word-
document pair (a,d) by the equation

tfidf(a,d,D) = tf(a,d)-idf(a,D) (3.23)

where

* tf(a,d) is the term frequency (see Table 3.1). When tf(a,d) is large, the word a is a good
indicator for the document d. In contrast, when tf(a,d) is small, the word-document
association is not that strong.

* idf(a, D) is the inverse document frequency (IDF). It is developed based on the fact
that common words across documents are less informative. For example, for a collection
of documents on sports, it is likely to see player and players in most documents. In
this case, the words player and players are less interesting in discriminating different
documents or contexts. Let df (a, D) be the number of documents in D containing the
word a. A common form of idf(a, D) is given by

. D
idf(a,D) = IOgdf(a|D) (3.24)

Eq. (3.25) would penalize a word if it more often appears in the collection of documents.

3.3.3

3.3 Count-based Models 147

Similarly, we can have a smoothed version of idf(a, D), like this

: D]
f(a,D) = log———7——+1 2
ld (a7) Og df(a,D) + 1 + (3 5)

Having the TF-IDF feature function in hand, we can build a word-document co-occurrence
matrix for a given collection of documents, that is, the value of the entry (a,d) of the matrix
is tfidf (a,d, D). Then, as described in the last subsection, we can treat a row of the matrix
as the vector representation of the row word. Note that, traditionally, the TF-IDF method
and word-document co-occurrence matrices are often used in document representation. For
example, one can represent a query and a number of documents as the TF-IDF (column) vectors
in an information retrieval system. This allows us to look at how much the query matches each
of these documents via vector similarity. However, the vector space models in information
retrieval are beyond the scope of this chapter, but the reader can refer to related textbooks for
greater coverage of this topic [Manning et al., 2008; Buttcher et al., 2016].

Low-Dimensional Models

Co-occurrence matrices are often high dimensional. Suppose, for example, that there is a
vocabulary of 20,000 unique words and a collection of 10,000,000 documents. Then, a
word-document co-occurrence matrix has 20,000 x 10,000,000 = 2 x 10! entries. However,
if we consider the computational burden of such a model, it would be hard to imagine that
a word is represented as a 10,000,000-dimensional vector and a document is represented
as a 20,000-dimensional vector. Instead, we expect that the representation of a word (or a
document) requires only a reasonably small number of features. In this subsection, we discuss
some standard approaches to transforming words (or documents) into lower-dimensional
representations from the co-occurrence matrices. Most of these approaches have been well
studied in the literature and have been successfully applied in several disciplines [Barber, 2012;
Wright and Ma, 2022]. So we do not dive into the mathematical details behind them, but show
how to apply them in the context of learning word (or document) vectors.

1. Latent Semantic Analysis

In NLP, latent semantic analysis (LSA) is a method of seeking the latent semantic structure
behind the word-document associations [Deerwester et al., 1990; Landauer et al., 1998]'°. It
assumes that either words or documents can be represented as low-dimensional vectors that are
distilled from the co-occurrence matrix, preserving the property of the original vector space
model, e.g., the angle between vectors is small for similar words.

More specifically, LSA factorizes the co-occurrence matrix into a matrix for word repre-
sentation, a matrix for document representation, and a third matrix connecting the first two
matrices. Mathematically, this can be framed as a singular value decomposition (SVD)
process [Stewart, 1993]. Let M € RIVIXIPl be a co-occurrence matrix over a vocabulary V

161 atent semantic analysis is also called latent semantic indexing (LSI). This term is more often used in
information retrieval and related fields.

148 Chapter 3. Words and Word Vectors

and a document set . The SVD produces a factorization of M, like this

M = PxQT (3.26)

where P € RIVI*" 3 e R™*" and QT € R"*IP!, In this factorization, the representation model
is isolated into two terms P and QT so that both of them are semi-unitary (or semi-orthogonal
in our case)”, that is, the columns of either P or Q are orthogonal vectors. Thus, these
columns form an orthogonal basis of R", where 7 is the rank of M. This means that we use a
“minimum” number of dimensions of data to represent M. X is a diagonal matrix:

01 0 0
0 o9 .. O

Yy =) o] (3.27)
0 O oy

The diagonal entries {071, ...,0, } are all non-negative real numbers, and are called the singular
values of M. Typically, {01, ...,0,} are arranged in descending order (i.e., o1 > 03 > ... > 0}).
Thus, SVD is unique for the given matrix M. If we write P as a sequence of column vectors
(call them left-singular vectors)

P - {pl,...,pr} (3.28)

and QT as a sequence of row vectors (call them right-singular vectors)

af
Qr = : (3.29)
ar
then we can write M as
T
M =) opiq] (3.30)
i

For representing words, we can think of p; as the values of a feature function over all the
entries of the vocabulary V. Then, we describe a word a; as an r-dimensional feature vector
e; in which the [-th feature is the i-th entry of p;. In other words, the vector representation of
a; is

ei = |m@) . p(0)] (331)

7A non-square matrix X is semi-orthogonal if and only if XXT=TorX'X=L

3.3 Count-based Models 149

Similarly, the vector representation of a document d; can be written as

b = [a0) - al) (3.32)

In this way, we have two separate representation models for words and documents: P deals
with word representations and Q) deals with document representations. Thus, we can take M
as a product of these representation models, like this

M = PxQT
€1 g1
.é’ documents (333)
:O .
2 [l .. nf]
e|V| 0 oo Op

In practice, the rank 7 is usually much smaller than |V'| and |D|. Thus, we have, for
each word (or each document), a new representation whose dimensionality is much smaller
than the representation contained in the co-occurrence matrix. A further improvement can
make use of the r* largest singular values (i.e., {01, ...,0,+ }) and throw away the rest. As a
consequence, we only keep the first 7* left-singular vectors and right-singular vectors in P and
Q respectively. Here r* < r is a hyperparameter specifying the number of vectors in P and Q,
i.e., the number of features used to describe a word or a document. In this way, we have a new
factorization of M as

M ~) oipiq] (3.34)

The right hand side of Eq. (3.34) is also known as a low-rank approximation of M. By
specifying r*, it can approximate IM with a matrix having an arbitrary rank < 7.

There are a number of algorithms for implementing the SVD [Cline and Dhillon, 2014]. In
fact, most of the modern implementations of the SVD are efficient and scalable. One can use
them as off-the-shelf toolkits in NLP applications.

2. Principal Component Analysis

In data analysis, principal component analysis (PCA) is a widely-used technique for dimen-
sion reduction. Given a set of data points, PCA finds a sequence of orthogonal directions in
the coordinate space so that the variance of the data points along these directions is maximized.
These directions are typically represented as unit vectors, called principal component load-
ings or principal component coefficients. As a result, they form a new coordinate space to
which we can map the given data points by an orthogonal linear transformation.

IVIXIDI where each row is a
|D]

Consider a word-document co-occurrence matrix M € R
| D|-dimensional word vector or feature vector. The PCA defines a linear mapping from R
to RP?, that is, we transform each | D|-dimensional word vector to a p-dimensional word vector.

150 Chapter 3. Words and Word Vectors

This is given by
N = MC (3.35)

where N € RIVIX? is the mapped word vectors over the vocabulary V, and C € RIPI*? is the
matrix of the linear mapping. Then, we can write C as a sequence of column vectors

C = |a . o (3.36)

ci(1)
Each column vector c; = : is a group of principal component coefficients, indi-
ci(|D])
cating a linear function that combines the input features into a new feature. For example, if we
view M as the values of a bunch of feature functions (say, column vectors {my, ..., mp|}),
we can map M to a new feature space in terms of c;:

ci(1)
Mc; = [ml m‘Dd :
ci(| D))
|D|
= > cilk)my (3.37)
k=1

Mcg; (i.e., the i-th column of N) is a column vector where each entry is the new feature
for a word in V. In PCA, we generate {c1,...,c,} in sequence such that they maximize the
variance of the linear mapping in Eq. (3.37). Thus, for each i € [1,p], the optimal principal
component coefficients are defined to be

¢; = argmax Var(Mc;)
<

= argmaxciTSci (3.38)

C;

where Var(Mc;) is the variance of Mc;, and S is the covariance matrix of M. For a well-
defined solution to Eq. (3.38), it is common to impose an additional constraint that c; is a unit
vector, i.e., cZ-Tci = 1. Then, the problem can be framed as

¢; = argmaxc,Sc; —\(cic;—1) (3.39)

c;
where J; is the Lagrange multiplier. Solving Eq. (3.39) under such a constraint requires ¢;
to be an eigenvector of S and \; to be the corresponding eigenvalue [Jolliffe, 2002]. Since
S is a p X p symmetric matrix, it has exactly p eigenvectors and eigenvalues. Then, we can
order these eigenvectors by the associated eigenvalues, and take the ordered eigenvectors as
{€1,...,¢p}. In other words, ¢; is the eigenvector of S with the largest eigenvalue, ¢ is the

3.3 Count-based Models 151

14 T T T

192 k Direction 1

° - B Direction 2

Ov\ | | | |
0o 2 4 6 8 10 12

Figure 3.5: Transforming 2-dimensional data to 1-dimensional data via PCA. There are a
number of data points (represented by black circles) on a Euclidean plane. By using PCA,
we find a direction (represented by an arrow) such that the variance of the projected data
(represented by colored circles) in this direction is maximized. Such a direction can be
represented by a unit vector, called principal component coefficients. In this example, the
principal component coefficients describe a 1-dimensional coordinate space. We can map the
data from the 2-dimensional coordinate space to the 1-dimensional coordinate space via linear
transformation. The mapped data is called the principal component of the original data points.

eigenvector of S with the second largest eigenvalue, and so on. Typically, Mg; is called the
i-th principal component of M.

An intuitive way to think about PCA is to map data points in a Euclidean space from one
coordinate system to another. For a data set M, we can view each row in M as the coordinates
of a data point in a |V/|-dimensional coordinate system A. In PCA, we want to represent
these data points in a new p-dimensional coordinate system B. The i-th dimension of the new
coordinate system is simply a direction represented by a unit vector c;. For the i-th coordinate
of each data point in B, we project the data point in A onto the c; line. The optimal c; is
chosen in terms of how these projected data points are spread along c;. In other words, we seek
a line along which we can best separate the data points. In this way, we generate a sequence of
principal component coefficients, successively solving Eq. (3.38). We illustrate the idea of
PCA using an example projecting 2-dimensional data to 1-dimensional data in Figure 3.5.

In real-world applications, p is commonly set to a number much smaller than |D|, and
PCA can significantly reduce the number of dimensions used in representing words. Note that
PCA is a very general method and is found to be useful in many disciplines. In practice, M
can be extended to represent observations on a set of variables. By applying PCA, one can
transform these observations into data values of fewer new variables.

152 Chapter 3. Words and Word Vectors
3. Others

In machine learning, learning low-dimensional models is a fundamental problem, and has been

generalized in several directions. For example, the neural word embedding models described
in Sections 3.4 and 3.5 themselves tend to learn low-dimensional, real-valued word vectors
from texts. Here we present some of the dimension reduction methods one may come across in
the NLP and machine learning literature.

» Topic models. Technically, topic models are not ways of dimension reduction, but tools
for describing how documents and words are generated based on distributions over topics
[Blei, 2012]. For example, latent Dirichlet allocation (LDA) models the generation of
a document by using document-topic and topic-word distributions [Blei et al., 2003]. As
a by-product, we obtain a distribution over words for each topic, indicating how likely a
word occurs given a topic. If we write all these topic-word distributions as a matrix, say
a |V| x K matrix where |V/| is the number of words and K is the number of topics, then
we will have some sort of word representations that are very similar to those described in
previous sections. K is commonly set to a “small” number (e.g., 200). In this case, we
have a low-dimensional model for representing words. Although LDA is not so popular
in learning word representations in NLP applications, it offers a way to represent words
as distributions over latent thematic structures.

* Auto-encoders. Undercomplete auto-encoders are a type of neural model that encodes
features into low-dimensional codes such that the input features can be reconstructed
from the codes. An advantage of auto-encoders is that they do not make assumptions
on the hidden structures of the features. Thus, auto-encoders can be used to learn to
transform any type of data into low-dimensional representations. For example, in Chapter
7 we will see examples of applying auto-encoders to learn sentence representations. For
more details about auto-encoders the reader can refer to Chapter 2.

* Supervised dimension reduction. Traditionally, dimension reduction methods (such as
PCA) are assumed to work in an unsupervised manner. When the benchmark data of the
target task is accessible, it is natural to make use of this information. A common example
is supervised dimension reduction for classification. For example, in the Fisher’s linear
discriminant and linear discriminant analysis methods, we find a mapping from
high-dimensional data to single-dimensional data so that the separation of the classes
associated with the data is maximized. This idea can be generalized to multi-dimensional
data in the Canonical Variates method [Barber, 2012].

* Feature selection. Feature selection refers to a process of selecting a subset of the
features used in representing an object and thus reducing the dimensionality of the
representation. Feature selection is a wide-ranging topic in machine learning, and
many methods can be seen as instances of feature selection [Guyon and Elisseeff, 2003;
Liu and Motoda, 2012]. The simplest is to frame it as a search problem: we search
in the space of feature subsets so that the selected features maximize (or minimize)
some objective. In general, the design of the objective depends on the task where we
apply the features. This makes feature selection somewhat difficult because one has

3.4

3.4 Inducing Word Embeddings from NLMs 153

to consider many factors in such a process, such as the performance measure of the
target task, the search efficiency, and the representation of each feature subset. Note
that feature selection is generally discussed in supervised learning that requires labeled
data to compute loss for optimization. The reader is referred to Solorio-Ferndndez et al.
[2020]’s review paper for unsupervised feature selection methods.

In statistics, many methods can fall under the dimension reduction framework and are
related to what we discussed in this section. For example, factor analysis is a method similar
to PCA because they both seek a linear mapping from the input variables to a smaller number
of new variables. The difference between them is that factor analysis focuses on modeling the
common variance of variables, while PCA focuses on maximizing the variance of the projected
data. Another example is independent component analysis (ICA). Unlike PCA, the goal of
ICA is to find independent components that are additively separable. More examples can be
found in machine learning and statistics textbooks [McClave and Sincich, 2006; Freedman
et al., 2007; Barber, 2012].

Inducing Word Embeddings from NLMs

Counting word-word or word-document occurrences is a simple way to represent words by
using their distributions in texts. While this method is effective in many applications, it imposes
a constraint on word representations: the entries of a word vector should be able to be explained
as some “evidence” on how the word distributes in different contexts. Ideally, we would like to
represent words in a more general form, say, a real-valued vector (call it the word embedding)
without constraints or assumptions on how the meaning of each entry of the vector is defined.

Learning word vectors with no constraints comes at a cost. Unlike the count-based methods
presented in Section 3.3, we do not use heuristics or prior knowledge to estimate the value of
a word vector but wish to induce meaningful word representations directly from data. One
of the difficulties here is that there is no gold standard to guide the learning process because
it is simply impossible to manually annotate a real-valued word vector. Thus, we are often
interested in treating the learning of word vectors as a part of a well-defined task (call it a
background task). The learned word vectors are then a by-product of the learning on the
background task.

A common example is the induction of word vectors from neural language models (NLMs).
Recall the NLM described in Chapter 2. Its goal is to build a neural network that predicts
the probability of a word given its preceding words [Bengio et al., 2003a]. More formally,
let w; be the word we want to predict, and {w;_p41,...,w;—1} be the context words we have
seen. First, the words {w;_p41,...,w;—1} are transformed to d.-dimensional word vectors
{€i—n+1,...,€i—1} through an embedding layer. Assuming wj is the one-hot representation of
word j (a row vector of size |V'|), the word vector e; is given by

ej = wC (3.40)

where C € RIVI%de 5 the parameter of the embedding layer. C is often known as the word

3.5

154 Chapter 3. Words and Word Vectors

embedding table in which the k-th row is the representation of the k-th word in V.

Then, we use a feed-forward neural network to compute the probability distribution of the
word at position ¢. This is given by

Pr(|lwi—ny1,-wic1) = Fypl€int1,..,€i1) (3.41)

where Fy(-) is a feed-forward neural network parameterized by 6. Typically, the embedding
layer can be seen as a component of the NLM. Here we use slightly different notation to
emphasize that the NLM is a function of both § and C, like this

Pro.c(-|Wi—nt1,..;wi—1) = Fpc(Wi—nt1,-., wi—1) (3.42)
For training, we optimize both # and C to minimize a loss function. A popular method is

maximum likelihood training which maximizes the sum of log-likelihood over all n-grams in
the data. Given a sequence of words 1wy ...w,, the objective of the training is defined to be'®

6,C) = arg maXZ log Pro ¢ (w;i|wi—pnt1, ..., wi—1) (3.43)
6,C i=n

Having obtained the optimized parameters 0 and C, we can apply F; &(-) to deal with

new n-grams. More importantly, we have some well-trained word vectors (i.e., 6) that can be
used in systems other than NLMs. This is also known as the pre-training of word vectors. In
pre-training, we can define Fy () as any system that makes use of the word vectors C. Thus,
the task of learning C is transformed to the task of optimizing F c(-) on the background task
(see Figure 3.6 for an illustration). The main advantage of this method is that we can reuse
existing NLP tasks to train the word vectors. A risk here is that the “best” word vectors found
in training Fy ¢(-) might not be well suited for the system where the word vectors are in actual
use. Interestingly, in many situations, word vectors that are pre-trained by NLMs are of good
quality for downstream tasks, or at least provide a good starting point for further tuning of
these word vectors in the target system.

Word Embedding Models

In principle word vectors can be learned in any manner. Treating word vectors as components
of existing NLP systems is one option, but typically lacks task-specific considerations. Another
option is to develop methods specifically tailored to the problem. The training of such systems,
therefore, does not need to satisfy the constraints of standard NLP tasks, making it easier to
learn word vectors.

13 This can be generalized to a data set consisting of multiple sequences.

3.5.1

3.5 Word Embedding Models 155

Optimizing C and ¢ Using optimized C
via language modeling on the new task
FH,C(') Gﬂ,é()
e o optimized word vectors c ~ o o
C — |e ° T .} C — °
Training Word Vectors Applying Word Vectors

Figure 3.6: Illustration of pre-training word vectors in an NLM. The NLM can be denoted as
a function Fy () of the word embedding table (i.e., C) and other parameters of the NLM
(i.e., §). The pre-training of C is essentially a process of training Fp c(-) on a background

task. The outcome is the optimized word vectors C which are then applied to a new system
G () that might be different from the NLM. In the new system, C is the word embedding
table learned from the NLM and 7 is the parameters specialized to G(-).

Word2Vec

Word2Vec is a short name for the models proposed in [Mikolov et al., 2013a;c]. As with
neural language models, the Word2Vec models are based on neural networks. Rather than
resorting to the generative modeling of n-grams, the Word2Vec models describe the learning
of word vectors in a log-linear fashion. In consequence, the architectures of these models are
different from those used in language modeling. There are two types of models in Word2Vec:

* The continuous bag-of-words model (or the CBOW model). The CBOW model is a
word prediction model. It is used to predict how likely a word at position ¢ occurs given
the —n and +n word windows around it. The structure of the CBOW model is similar to
that of the neural language model introduced in Chapter 2 (see Figure 3.7 (a)). First, we
use an embedding layer to transform the context words w;_,...w;—1 and W;41...Wi4n to
corresponding word vectors. This is performed by multiplying the one-hot representation
of each input word w; with the embedding table C € RIVIXde "as shown in Eq. (3.40).
These word vectors are then averaged to produce a single representation for the input
words, giving us

1 i—1 i+n
h = - > wiC+ > wC (3.44)
j=i-n j=i+1

Note that the above defines a model that completely ignores the order of input words
because of the use of the sum operation. This explains why the CBOW model is called
bag-of-words. The output layer of the CBOW model is a standard Softmax layer that

156 Chapter 3. Words and Word Vectors

projects h to a probability distribution over the vocabulary
y = Softmax(hU +b) (3.45)

where U € R% >V is the parameter matrix of the linear mapping and b € RVl is the bias
term. y is a distribution over the vocabulary, and Pr(w; [w;—p,, .., Wi—1, Wit 1, vy Wign) =
y(w;). Egs. (3.44-3.45) describe a very simple neural network. An advantage is that the
resulting model is small and efficient as compared to NLMs. The training of the CBOW
model is regular. We can frame it as finding the maximum likelihood estimation of the
parameters of the model. For simplicity, let # denote the parameters other than C (i.e,
6 ={U,b}). We have

m—n—1
0,C) = arg@rgax Z log Pro c(wi|wi—n, ...y Wie1, Wit 1, ..., Witn) (3.46)
’ i=n+1

where m is the length of the word sequence. After training, we can simply drop 6 and
use C as a word vector look-up table.

* The continuous skip-gram model (or the skip-gram model). The skip-gram model
is another word prediction model. It models the reverse of the task described in Eqgs.
(3.44-3.45). To be more precise, our objective is to predict each of the +n context words
given w;. This is generally framed as estimating the probability of w; occurring given
w; (t—n<j<i—1lori+1< 7 <i+n). Figure 3.7 (b) shows the structure of the
skip-gram model. The embedding layer deals with w; as usual. The representation of w;
is given by

h = wC (3.47)

It is then passed to a Softmax layer to predict the probability for each context word w)
(assuming j =i+ k)'°

Ve = Softmax(th—l—bk) (3.48)

where V, and by, are the parameters of the model (—n < k< —land1 <k <n). We
have

Pr(wjlw;) = Pr(wjprlw;)
— y(wise) (3.49)

Let 6 be a short representation of {V} and {by}. The training problem can be defined

When k > 0, w; is a word in the right context window of w;; when k < 0, w; is a word in the left context
window.

3.5.2

3.5 Word Embedding Models 157

as
R m—n—1
(,C) = argmax Z Z log Pry ¢ (wjtr|w;) (3.50)
0.C o1 —n<k<—1,

1<k<n

Both of the above models make an analogy to cloze tests by considering only the pairwise
dependency between words. A danger is that if complex relationships among words and word
order information are required, the resulting probability distributions will be not that precise
compared to language models. Note, however, that the goal of these models is not to precisely
predict missing words given their contexts, but to learn word representations from some task
that captures word-word relationships. It is therefore not so important to care about the word
prediction performance of the learned model.

Another merit of these models is that they have very simple, easy-to-train architectures.
For example, in both models there are no hidden layers and the embedding layer is directly
connected to the output layer. These model structures can be seen as instances of log-linear
modeling in machine learning: the input variables are linearly transformed to a feature vector
(e.g., Eq. (3.44)), followed by a log-linear function (e.g., Eq. (3.45)).

GloVe

Global vectors, also known as GloVe, are word vectors that are learned by using both global
statistics over the corpus and local models of word prediction [Pennington et al., 2014]. The
GloVe method starts with a word-word co-occurrence matrix (see Section 3.3), and then forms
a neural model by making a series of assumptions.

Given a word-word co-occurrence matrix M, where each cell M (a,b) = count(a,b)
represents the number of co-occurrences of words a € V and b € V, we can obtain the
conditional probability Pr(b|a) by using the equation

count(a,b)

>y count(a,b’)

_ count(a,b) (3.51)

count(a)

Pr(bla) =

where count(a) is the number of times the word a occurs in the corpus.

Let us now see a motivating example of GloVe. Suppose that we want to distinguish
between words air and water. It is easy to obtain how likely one of these words occurs given a
context word in the corpus via Eq. (3.51). See the following table for a small fraction of the
Pr(b|a) matrix from 3.8M-sentence English data in WMT14.

Entry | w=/fly w=drink w=breath w = live w = flow
Pr(airlw) | 1.5x107* 6.2x107° 22x107* 1.6x10"* 3.6x10~*
Pr(waterlw) | 1.3x 1075 4.1x107% 1.8x107® 14x107* 3.0x107*
Pr(air|w)/ Pr(water|w) | 11.54 0.15 12.2 1.14 1.2

158 Chapter 3. Words and Word Vectors

Pr(w;|wi—2, wi—1, Wit1,wiy2) = y(w;)

T

y = Softmax(hU +b)

AN

1 1
h:Z(ZE =i—2€j

€;+ Z] =i+1 e])

Embedding K—J / \’%

ej—2=w; 2C

ei—1=w;—1C

7

Wi —2

Pr(wi_g |wz)

=y 2(wi_2)

T

7

Wi—1

eir1 =w;+1C

€2 =w;12C

7

Wit1

(a) CBOW

Pr(wi_l |U)1)
=y-1(wi-1)

T

y—2 = Softmax(

hV_o+ b,Q)

yo1= Softmax(
hV_;+b_ 1

—

Pr(wH_l |w1)
=y1(wiy1)

T

7

Wi42

PI‘(H)H_Q \wz)
= y2(wi+2)

T

y1 = Softmax(
hVq+ bl)

y2 = Softmax(

hVy + b2)

S

—

Embedding h=w,C

7

w;

(b) Skip-gram

Figure 3.7: The CBOW and skip-gram architectures. The CBOW model computes
the probability Pr(w;|w;—2,w;_1,w;t1,w;y+2) where w; is a word in a sequence and
{w;—2,w;—1,w;+1,w;4+2} are words in the +2 context windows. The context representa-
tion h is the mean of the word vectors that are produced through an embedding layer. h is then
fed into a Softmax layer to output a distribution over the vocabulary (i.e., y). The prediction
probability of w; is Pr(w;|w;—2, w;—1,w;+1,w;+2) = y(w;). The skip-gram model is also
based on the embedding + Softmax structure. It models the probability of each context word
w; given the word w;. This is achieved by simply computing the output of a standard Softmax
layer that takes the vector representation of w; as input. Both the CBOW and skip-gram models
are trained in a maximum likelihood fashion. The resulting lookup table of the embedding
layer is the word vectors (or embeddings) for the words in the vocabulary.

In this table, Pr(air|w) and Pr(water|w) indicate how well air and water correlate with
different w. We also compute the probability ratio Pr(air|w)/Pr(water|w) in the last line

3.5 Word Embedding Models 159

of the table. Interestingly, it is found that w can be viewed as a probe word by which
Pr(air|w)/Pr(water|w) models the relevance between words. When w is more relevant
to air but less relevant to water (e.g., w = fly or w = breath), Pr(air|w)/Pr(water|w) is
large. In contrast, when w is less relevant to air but more relevant to water (e.g., w = drink),
Pr(air|w)/ Pr(water|w) is small. When w is relevant to both words, or irrelevant to them (e.g.,
w = live or w = flow), Pr(air|w)/ Pr(water|w) is around 1.

An insight that we can gain from the above examples is that the word vectors should be
able to interpret Pr(air|w)/Pr(water|w). A simple idea is to develop a model to approximate

this probability ratio, say,

F(eq,ep,€y) = (3.52)

where e,, e, € R% are the vector representations of the words a and b, and e, € R% is the
vector representation of the context word w. Note that the notation has different meanings for e
and e. The former is a word vector from an embedding table C, and the latter is a word vector
from another embedding table C. The use of two embedding tables has several advantages.
The main advantage is that combining multiple sets of parameters could mitigate the overfitting
of the model. The final word embedding table takes the form CLQC

There are many ways to define the function F'(-). Here we simply treat F'(-) as a neural
network parameterized by C, C and some other parameters. Considering the subtraction nature

in comparing a and b in 1;1%3\‘53 , we can assume that F'(-) depends on e, — €. Furthermore,

we can take eaeg € R (or ebeg € R) to model the relationship between the word « (or b) and
the context word w. These lead to a new form of the function

Pr(alw)

Fllea=esén) = i)

(3.53)

where (e, —ep)é. € R is the difference in representing words a and b when taking w as a
probe word.

There are still many solutions to Eq. (3.53), though the input of the function is greatly
simplified. For a feasible form of F'(-), we further assume that Eq. (3.53) holds when we
either exchange the embedding tables C and C (i.e., exchange e and e for a, b and w), or
transpose the word-word co-occurrence matrix (i.e., use M instead of l\N/I). To make use of
these assumptions, one way is to let F'(-) be a homomorphism between two sides of Eq. (3.53).
That is

F(eqer)

F((ea—eb)ég) = FeysT) (3.54)

w

160 Chapter 3. Words and Word Vectors

The solution to Eq. (3.54) requires that F'(-) = exp(-), and we have

F(eqel) = exp(eqel)
= Plajw)
_ count(a,w) (3.55)
count(a)
Rewriting this equation, we have
eqel +logcount(a) —logcount(a,w) = 0 (3.56)

A problem with Eq. (3.56) is that the term log count(a) makes the solution non-exchangeable
for M and M. To address this, a method is to absorb logcount(a) in some terms that are
symmetric for a and w, like this

€a€y + fa+ Bw —logcount(a,w) = 0 (3.57)

where 3, and 3, are bias terms that depend on a and w, respectively. The quantity on the
left-hand side of Eq. (3.57) describes how well eaég + Bo + Bw fits the co-occurrence matrix.
We wish to find some word vectors to enforce this quantity to be close to 1. Then, we can
define the squared loss, as follows

)

~ 2
Low = (eaég + B4 + Bw — log count(a, w)) (3.58)
The loss over all pairs of @ and w is given by

Lciove = Z v (count(a,w)) - Lg v (3.59)

a,weV
where v (count(a,w)) is a scalar for L, ,,. In Pennington et al. [2014]’s paper,

(count(a,w)

ag
T) count(a,w) < countyax

v (count(a,w)) = (3.60)

1 otherwise

where county,x and o are hyper-parameters. Typically, o is set to a number smaller than 1.
As such, v (count(a,w)) will penalize the word-pair (a,w) if count(a,w) < countmax, that
is, the loss function will assign smaller weights to rare word-pairs.

Egs. (3.58-3.59) provide a very simple way to learn word vectors and can be implemented
by using standard neural network building blocks (e.g., vector dot product and summation).
An important property of GloVe is that the model e,&L + 8, + 8, — log count(a, w) is itself
linear. The training is even achieved without the need of cross-entropy loss. This differentiates
GloVe greatly from NLM and word2vec in which expensive normalization of the output is
required. The intuition here is that the relation between two words can be modeled in ways
other than probability-based divergence. In fact, Eq. (3.58) looks more like a regression model

3.5.3

3.5 Word Embedding Models 161

that fits the data of log count(a,w), that is, we tend to learn to predict log count(a,w) for any
pair of (a,w).

Another note about the use of global data bears repeating. The co-occurrence matrix is
a source of information that describes the entire corpus. An important consequence of using
such information is that the learning task is framed as finding word vectors that are globally
optimized. Of course, this does not make GloVe unique because the learning of many models
like NLM and Word2 Vec itself admits a simple formulation as a global optimization problem,
e.g., maximizing the likelihood over the entire input space. However, the objectives in those
problems are complex, and most of them are in practice trained via online learning, e.g.,
updating the model parameters on a batch of samples each time. Given this, GloVe actually
defines a more efficient global model as compared with NLM and Word2Vec.

Remarks

We have seen in the previous sections how word vectors are learned by using several different
methods. We now turn to discussions of issues that one might be interested in when training
and/or applying word vectors.

* Count-based vs Neural Network-based. The simplicity and interpretability of count-
based methods have long been appreciated. The use of the distributional hypothesis
greatly simplifies the problem, but makes a strong assumption on the information source
the word vectors can be learned from, and generally leads to data sparsity due to the
curse of dimensionality. At the other end of the spectrum is learning with no assumptions.
In these methods, we remove the constraints on the meaning of each dimension, but
treat word vectors as low-dimensional intermediate states of a neural network that is
developed to accomplish some NLP task. This enables the learning of features that are
hard to describe in representing a word. The comparison of the two types of methods
here can fall under the comparison of two well-known learning paradigms, say, feature
engineering vs. end-to-end learning. Here we do not want to get bogged down by this
topic. It is, however, worth pointing out that it does not necessarily restrict word vectors
to certain forms. In general, the choice of the types of word vectors depends on in what
application we apply them and what interpretation we place on them. For example, if
we wish to have some interpretable, easy-to-learn word representation, inducing word
vectors from co-occurrence matrices might be a good choice; if we wish to have some
real-valued, low-dimensional word vectors that will be integrated into a bigger neural
network, deep learning methods might be worth a try. Note that, learning continuous
word vectors has become more and more common recently, given that the past few
years have significant progress toward neural models of NLP. Also, there has been much
interest in comparing count-based and neural network-based methods, and in exploring
relationships between them [Levy and Goldberg, 2014b; Baroni et al., 2014; Levy and
Goldberg, 2014c; Schnabel et al., 2015a; Levy et al., 2015; Gladkova et al., 2016].

* Shallow Models vs Deep Models. While it has become popular to solve the word
vector learning problem using neural networks, the model structures we introduced in

162

Chapter 3. Words and Word Vectors

this chapter are simple. Technically, they all have one or two layers of neurons and
are often thought of as instances of shallow models. A similar example is the vLBL
word embedding model [Mnih and Kavukcuoglu, 2013]. It models the interaction
among words using a two-layer neural network. This model, which does not even
involve a Softmax function, is one of the simplest word embedding models subject
to our knowledge. Such a simple model, however, still works well in many cases. A
benefit of shallow models is that they are efficient and scalable to a large amount of
data. This makes it easier to use them to deal with more “difficult” NLP problems. A
good example is the fastText system for text classification [Joulin et al., 2017]. It has a
similar architecture to the CBOW model (see Section 3.5.1). In fastText, the input text is
represented as a bag of word vectors that are averaged to form a hidden representation
of the text. This is followed by an output layer that maps the hidden representation to
a distribution over predefined classes. In this way, the classification model and word
vectors are trained jointly. Although shallow models are remarkably effective for word
vector learning, there are deeper models that one may be interested in for more modeling
power. As with most multi-layer neural networks, learning word vectors with deep
neural networks has a couple of benefits [Telgarsky, 2016]. First, by using a deep model,
we can exploit potentially better hypotheses in a large hypothesis space. Second, deep
models introduce more non-linearity into modeling, and thus increase the ability of the
model to describe complex problems. There are many examples of learning word vectors
in deep models. The simplest of these might be to simply stack more layers on the
word embedding layer in those systems. The stacked layers can be feed-forward layers,
recurrent layers, convolutional layers, or some combination of them. More recently,
word vectors have been employed and/or trained by very deep and complex systems,
achieving state-of-the-art performance on many NLP tasks [Radford et al., 2018; Devlin
et al., 2019]. However, stronger models come with added computational and training
challenges. So there are several lines of research on meeting these challenges [Pascanu
et al., 2013; Bapna et al., 2018; Wang et al., 2019a; Zhang et al., 2019a; Pham et al.,
2019; Li et al., 2020b]. In Chapters 4-6, we will see several successful NLP systems that
are based on very deep neural networks.

Training Objectives. The idea of taking word vector representations as parameters
of a model fits well with the latent-variable modeling: a model is parameterized with
learnable word vectors, and the values of these word vectors are inferred by maximizing
or minimizing some objective function of the entire model. While such a learning process
is regular in most situations, the training objective varies somewhat. A difficulty with
this is that there is no obvious objective for directly signaling the training of word vectors.
A simple solution to this difficulty is to resort to well-defined NLP tasks. For example,
we can use word vectors to represent the input of an NLP model (such as language
modeling and text classification systems). Hence the word vectors can serve as standard
parameters of the model and be optimized as usual. Another solution is to develop “new”
training tasks. As in general machine learning problems, however, this is a wide-ranging
topic and there are so many choices to design a training objective. So a general method

3.6

3.6.1

3.6 Evaluating Word Embeddings 163

is to slightly update existing tasks. For example, the training objective of CBOW is
essentially based on the general word prediction problem, and has a similar form as that
used in language modeling. We will also see several new tasks that stem from language
modeling in Chapter 7. Yet in another sense these training tasks do not directly concern
themselves with the issue of learning word vectors, but generally offer a way to inject it
into a well-designed, efficient training procedure. Note that, in word vector applications,
we may not assume a supervised learning scenario: the learned word vectors can be
used in various systems that we have no idea of these application systems in the training
stage. This makes the problem more like an unsupervised learning problem because
there is no supervision information from the task where the word vectors are in actual
use. Sometimes, when the target application is accessible, and there is some labeled data,
we can have further training on those word vectors that have been trained somewhere.

Evaluating Word Embeddings

Having obtained the vector representation of words, we need to assess the quality of these
vectors. Ideally, we wish to evaluate the word vectors against a gold standard. However,
unfortunately, there is in general no such gold standard data since no one can annotate a vector
of numbers for describing a word. A simple solution in this case is to resort to the result of
some working system in which these word vectors are involved. Typically, there are two types
of evaluation approaches [Schnabel et al., 2015b].

» Extrinsic Evaluation (or end-to-end testing). We directly incorporate the word vectors
into an NLP system which is easy to evaluate, and see how the performance of the
system is influenced by the word vectors.

* Intrinsic Evaluation. We test the ability of the word vectors to model the given aspects
of morphological, syntactic, and semantic problems.

We will briefly describe below how these approaches are applied to word vector evaluation.

Extrinsic Evaluation

This approach is often taken in practice since it allows researchers and engineers to glean
a quick understanding of how a real-world system behaves when changing part of it. Since
many NLP systems use words as inputs, it is common to replace the symbolic representation
of words in these systems with the word vectors. So far, we have seen several systems of
this kind, commonly with an embedding layer transforming the one-hot representation to the
real-valued vector representation of each input word, see for example the neural language
model in Chapter 2.

Given such a system and a set of learned word vectors, we can use its performance as a
measure of the quality of the word vectors. Considering the way we use the word vectors, there
are two ways to train the system:

* Word Vectors as Fixed Parameters. We fix the word vectors, and train other parameters

3.6.2

164 Chapter 3. Words and Word Vectors

of the system as usual.

* Word Vectors as Initial Parameters. We train all the parameters in the same manner.
In this way, the provided word vectors can be seen as initial values of some of the
parameters, and would be updated during training.

Both methods fall under the area of pre-training, and could be extended to cover many
problems where part of a model is well trained before seeing the downstream task. By fixing
word vectors, we simplify the training process, leading to a quick evaluation of the word vectors.
In contrast, treating the word vectors as learnable parameters may increase the difficulty of
training, but could learn “new” word vectors that are better suited for the working system.

Note that although extrinsic evaluation is of interest to practitioners, the results from this
evaluation are highly dependent on the system in which we apply the word vectors. Because
developing a desired NLP system often involves sophisticated training and tuning procedures
other than word representation, the conclusion drawn by experimenting with such a complex
system is greatly influenced by the way we build and use the system. This is also the case for
many other NLP problems. For example, a tokenization method that is helpful for a machine
translation system might not be a good choice for an information retrieval system. Therefore,
to test the generalizability of the given word vectors, a widely-used approach is to carry out
experiments on a variety of NLP systems.

Intrinsic Evaluation

Although much of word representation research involves end-to-end tests in NLP applications,
it also involves examining the ability of the representation to deal with certain problems, such
as interpreting the relationship between two words. There are many ways to design intrinsic
evaluation, each addressing a specific problem. In the following we describe some of these
methods. For more comprehensive descriptions about intrinsic evaluation, the reader can refer
to papers on this subject [Baroni et al., 2014; Bakarov, 2018; Rogers et al., 2018].

1. Semantic Relatedness

Modeling the relatedness between words is perhaps the most popular method to evaluate the
quality of word vectors in NLP [Reisinger and Mooney, 2010; Huang et al., 2012; Baroni et al.,
2014]. It is fundamentally about computing some distance between words (call it the word
semantic distance or word distance for short). The motivation is that the word distance in
a word vector space should agree with the judgments on the word relatedness in our mind
[Rubenstein and Goodenough, 1965]. For example, we wish that dog is close to wolf, and
peach is far from television. Mathematically, there are a lot of ways to calculate the distance (or
angle) between two vectors. A simple and commonly used distance measure is the Euclidean
distance. Also, we can compute the cosine similarity of two vectors to obtain a score in the
interval [—1,1]%.

In evaluation, we are given a set of word pairs, each of which is assigned an expected

201¢ is often to use the absolute value of the cosine score so that 0 indicates two vectors in the same direction and
1 indicates two orthogonal vectors.

3.6 Evaluating Word Embeddings 165

distance by humans. Then, given a pair of words, we compare the expected distance with
the distance in the word vector space. The quality of the word vectors is reflected in the
difference between the two distances. However, a difficulty here is that there is, in practice,
no gold-standard distance between words. Even for humans, it is still very difficult to give
an exact number to describe how close a word is to another. An alternative method in this
case is to categorize the distance into a few categories or rating scores, such as an integer in
[1,5] [Reisinger and Mooney, 2010]. This greatly reduces the difficulty in data annotation.
Another way to reduce the difficulty is to let the model find the most similar word in a small
set of candidates to a given word. Such a method prevents us from predicting an absolute
distance between words. Instead we only need some mechanism to obtain the relative distance
or similarity between words [Baroni et al., 2014].

Judging the relationship between words, however, may result in a highly ambiguous
task because of the ambiguous nature of language use and understanding. In general, many
factors may affect one’s thoughts on how words are related [Faruqui et al., 2016]. For
example, corn and cornea are similar if we consider string overlaps in the suffix, but they are
semantically dissimilar because they refer to different meanings. The ambiguity also comes
from the definition of relatedness. Sometimes, relatedness and similarity are two terms used
interchangeably but they may refer to different concepts. For example, car is related to road,
but in another sense car is similar to van. Another problem is that the meaning of a word is
often context-dependent. This makes it more difficult to establish the relationship between
words with multiple different meanings (i.e., polysemy). Broadly speaking, this is an inherent
problem with statistic word vector models where every word is assumed to be mapped to a
single vector. For contextualized modeling of word vectors, we will describe in the following
chapters several methods that consider a word to be different in representation given different
contexts.

2. Word Analogy

Word analogy is concerned with modeling analogical relations between pairs of words. The
assumption here is that the relation between words can be captured by performing simple
algebraic operations on the corresponding word vectors. A well-known example is the one
presented in Mikolov et al. [2013d]’s paper, where it is found that the way a word is related to
another word can be described by vector subtraction. This leads to an interesting result: if we
subtract man’s word vector from king’s word vector, and add woman’s word vector to it, then
we will obtain a word vector close to queen’s. That is

€Lking — ©man + €woman = €queen (361)

Formally, word analogy is a task of comparing two word pairs (a,a*) and (b,b*). An
analogy can be made if the way a is related to a* is similar to the way b is related to b*. This
essentially reflects some sort of linguistic regularity in word vectors, which can be expressed

166 Chapter 3. Words and Word Vectors

by using vector subtraction:
€ — €3 = €y —€p (3.62)

The word analogy can be framed as an analogical reasoning task: we try to predict ep-
using e,, e,+ and €. More specifically, we wish ey« — e, + e, to be close to ey« if (a,a*) and
(b,b*) hold similar relations. Also, improvements can be made on such a formulation. For
example, we can consider the angle between vectors e,« — e, and ey« — €, rather than the
difference in e, — e, + € and ey« [Levy and Goldberg, 2014b].

Word analogy provides a simple way to examine the linearity property of a word vector
model which is not typically involved in classic methods. An interesting point here is that the
recent word vector models exhibit good linear behavior, although we do not consider this in
modeling and/or training. It also gives researchers useful insights into the models learned by
those methods and into potential ways of applying these models [Levy and Goldberg, 2014b;
Linzen, 2016; Allen and Hospedales, 2019]. On the other hand, word analogy is not a general-
purpose method. In many cases, it does not correlate well with the performance of downstream
systems, and is thereby used as a way to study certain issues of word representation.

3. Word Categorization (or Clustering)

Another way to see how well the word vectors correlate with our understanding of word
meaning is to see how well these vectors can be categorized into meaningful groups. This
is often achieved by performing clustering algorithms on the word vectors. We wish that
similar words are grouped into the same cluster, and dissimilar words are grouped into different
clusters. For example, apple, grape, peach, and orange belong to the same group of words
because they are all fruits. An advantage of this kind of evaluation is that many clustering
algorithms and word clustering benchmarks have been developed and are straightforwardly
applicable here. On the other hand, as in most clustering tasks, there are practical issues that
we have to deal with, such as determining the number of clusters.

In machine learning, most clustering methods require computing the distance between
data points. In this sense, word clustering is essentially based on the same idea of modeling
the word relatedness, though we do not need to judge the quality of the distance in this case.
This shows some intrinsic connections among different evaluation methods. However, as a
side-effect, word clustering inherits the same problem with related methods (such as semantic
relatedness). As discussed in Section 3.6.2, it is difficult to design a gold-standard criterion to
measure how well the words are clustered, since we can group words into clusters in so many
different ways.

4. Subconscious Evaluation

The general idea of subconscious evaluation is to examine the correlation between the use
of word vectors and subconscious behaviors or brain functions when one reads text. A wide
variety of psycholinguistic phenomena can be used as the test [Mitchell and Lapata, 2010]. A
well-known method is priming which studies how a person responds to stimuli [Schacter and

3.6.3

3.6 Evaluating Word Embeddings 167

Buckner, 1998; Tulving and Schacter, 1990; Wiggs and Martin, 1998]. For example, we can
design an experiment to test the speed with which a person reads a given word (call it the target
word) when it follows another word (call it the prime word) [Meyer and Schvaneveldt, 1971;
Lund, 1995; McNamara, 2005]. If the target word ¢ is read more quickly when following a word
a than when following another word b, then we would say that ¢ correlates more with a than b.
Then, we can use such a psychological measure to judge the distance or similarity between
word vectors. To obtain the time the participant takes in reading, a popular method is to frame it
as a self-paced reading task”!. Another method is to use eye-tracking to automatically record
the information of the eye movement and position. By using these techniques, several methods
and data sets have been used for studying a variety of psycholinguistic issues [Mitchell and
Lapata, 2010; Hutchison et al., 2013; Lapesa and Evert, 2014; Klerke et al., 2015; Sggaard,
2016; Auguste et al., 2017].

In addition to tracking human behavior in reading, we can monitor brain activity by using
neurological tests, such as functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG) [Devereux et al., 2010; Sggaard, 2016; Bhattasali et al., 2020]. For
example, it is often hypothesized that, when a person reads and understands words, some
activations occur in his or her brain. Therefore we can link the meaning of words with brain
functions. On the other hand, an objection is that the knowledge about the mechanism behind
these processes is still limited, making it difficult to correlate the results of these studies with
real-world NLP systems [Baroni et al., 2014; Bakarov, 2018].

5. Linguistically Motivated Evaluation

Linguistically motivated evaluation is based on an assumption that word vectors learned
from data should explain linguistic resources. One interesting approach to performing such
evaluation is to align the word vectors with some representations of the entries of a dictionary
[Tsvetkov et al., 2015; Acs and Kornai, 2016]. The quality of the word vectors is measured
in terms of the correlation between these word vectors and the linguistic representations??.
Apart from standard dictionaries, we can compare the word vectors against a semantic network,
such as WordNet. In this way, the evaluation would be improved if we consider graph-based

algorithms on resources of this type [Agirre et al., 2009].

Visualization

Taking word vectors as data points, we can adopt general approaches to visualizing multi-
dimensional data to locate data points in a 2 or 3-dimensional map. In this way, we can analyze
patterns encoded in these word vectors and interpolate the relationship between words. Since a
word vector generally has hundreds of dimensions in practical applications, we need dimension
reduction techniques to map it to 2 or 3-dimensional data for visualization. One method is PCA
which seeks a linear mapping from a high-dimensional space to a low-dimensional space (see

2 self-paced reading, the text is segmented into words (or phrases), and the participant is asked to press a
button to request the display of a segment.

2A linguistic representation can be seen as a feature vector that is manually built on a linguistic resource (such
as a dictionary).

3.7

168 Chapter 3. Words and Word Vectors

Section 3.3.3). Another well-known method is t-distributed stochastic neighbor embedding
(t-SNE) [Hinton and Roweis, 2002; Van der Maaten and Hinton, 2008]. t-SNE is a non-linear
dimension reduction method, and has been widely used in visualizing high-dimensional data.
Apart from these, one can consider the methods presented in Section 3.3.3 as well as those
tailored for visualizing word vectors [Zhang et al., 2019b; Liu et al., 2017].

Summary

In this chapter we discussed two interesting problems in NLP: tokenization and word (or
token) representation. First, we introduced models for dividing a sentence into units that are
meaningful and/or well suited for downstream tasks. Second, we introduced the idea of word
vector models with particular attention to learning both count-based high-dimensional models
and real-valued low-dimensional models. While most of these models are simple, they are
often used in complex NLP systems and form the basis of many advanced models, as will be
shown in the following chapters.

Tokenization (or segmentation) is an important “operation” in NLP, commonly as a pre-
processing step for many applications [Webster and Kit, 1992]. However, the use of the term
tokenization is somewhat misleading because it originally refers to a process of dividing a
string into substrings and is more often used as a general computer science term. In NLP,
tokenization can draw on concepts and results from several sub-fields. On the linguistics side,
tokenization is highly related to two fundamental questions: how words are composed and how
words form sentences. It is therefore natural to use theories and methods of morphology and
syntax to define the basic units of a language, leading to many rule-based tokenization systems
covering a variety of languages. On the machine learning side, tokenization has long been cast
as a problem of learning token boundaries from data in either a supervised or unsupervised
manner [Mielke et al., 2021]. A common approach is to first annotate some tokenized text with
human knowledge about what basic language units should be, and then learn to tokenize on
this annotated data (see Section 3.1.3). More recently, learning tokenizers without linguistic
constraints has been found to be promising (see Section 3.1.4). Since natural languages are
themselves sets of characters or byte sequences, it is also possible to segment a sentence into
characters or bytes [Ling et al., 2015; Lee et al., 2017]. The tokenization-free method in
general may help when one wants a language-independent tokenizer and a simpler pipeline for
processing the text.

From a more mathematical perspective, tokenization can be thought of as a mapping from
the input data to a sequence of variables. In this way, the concept of tokenization can be
generalized by relaxing the assumption that both the input and output variables are constrained
to discrete values. In recent image and speech processing systems, for example, researchers
try to transform continuous input data (such as pixels and acoustic signals) into a sequence
of vector-based “tokens” [Schneider et al., 2019; Dosovitskiy et al., 2021]. Some interesting
extensions of these ideas are even to transform image and speech data to a sequence of indices,
leading to approaches bearing a closer relation to NLP [Oord et al., 2017; Baevski et al., 2020;
Hsu et al., 2021].

3.7 Summary 169

Given that the input text is divided into smaller pieces, a natural next step is to represent
these pieces in some way that captures their underlying features. While representing language
units as vectors of numbers has been the de facto standard for the development of recent NLP
systems, the work on vector representation dates back to the very early days of computational
linguistics. According to many popular textbooks and papers [Manning and Schiitze, 1999;
Jurafsky and Martin, 2008], the idea of using a distribution to represent word meaning, also
known as distributional semantics, started in the 1950s with the rise of empiricism. At the
time, most of the work was influenced by Harris’s distributionalism [Harris, 1954] and related
work [Firth, 1957; Wittgenstein, 1953]. In parallel, Osgood [1952] proposed to define the
meaning of a concept as a point in a multidimensional space in a psychological manner. All
these ideas greatly influenced the way linguistics and NLP people think of word meaning in
the following decades.

Modern approaches to distributional semantics appeared in the 1990s, mainly as a result of
the revival of empiricism in artificial intelligence [Church, 2011]. Most of these were driven by
the distributional hypothesis: words having similar meanings are more likely to occur in similar
contexts. In response, a number of methods were developed, differing in the way the contexts
are modeled. For example, a context can be the words in a context-window, or the words
with a relation to the given word in a syntax tree. Apart from those mentioned in Section 3.3,
methods that are not covered in this chapter include hyperspace analogue of language (HAL)
[Lund and Burgess, 1996], distributional memory [Baroni and Lenci, 2010], dependency-based
semantic space models [Padé and Lapata, 2007], and so on. For comprehensive descriptions of
distributional semantics models, the reader can refer to papers that survey this topic [Lenci,
2018; Mitchell and Lapata, 2010]. Note that most of the above-mentioned work can be
thought of as instances of the vector space model which can deal with problems beyond lexical
semantics. For example, in compositional distributional semantics, the meaning of a phrase or
a sentence can be represented as a vector obtained by performing simple algebraic operations
on the word vectors [Clark et al., 2008; Mitchell and Lapata, 2010; Blacoe and Lapata, 2012].

While distributional models have attracted attention in the NLP community for many years,
word embedding models that learn low-dimensional, real-valued word vectors directly from
texts have been a predominant approach recently. As described in Sections 3.4-3.5, models
of this type do not depend on strong assumptions like the distributional hypothesis, but learn
to represent a word as a vector of hidden attributes (or features) describing the word. The
resulting model is an extension of the feature-based semantic model [Markman, 2013]. A
recognized difference with traditional feature-based methods is that we do not need to manually
define the features. We instead take these features as parameters of the model, and train them
in the way as in common (supervised) machine learning systems.

Formulating word representation as an end-to-end learning problem brings with it several
benefits. One of the benefits is that new features can be found because no constraints are
placed on how these features are learned and interpreted. On the other hand, as shown in
Section 3.6.2, the word vectors obtained in this way indeed show some linguistic properties,
though the word embedding models are not trained to achieve this. Another benefit is that
the word embedding models also fall in the vector space models in NLP, enabling the easy

170 Chapter 3. Words and Word Vectors

use of word vectors in various applications. There are also many examples of methods that
attempt to improve standard word embedding systems. For example, researchers have tried to
incorporate additional linguistic information into word vectors [Levy and Goldberg, 2014a;
Cotterell and Schiitze, 2015; Tissier et al., 2017], and to learn universal word vectors across
multiple languages [Klementiev et al., 2012; Mikolov et al., 2013b; Ammar et al., 2020; Smith
et al., 2017; Artetxe et al., 2017].

Widely associated with neural models in NLP, the idea of distributed representation has
been successfully applied to problems beyond word representation, e.g., sentence representation
[Le and Mikolov, 2014; Kalchbrenner et al., 2014; Kiros et al., 2015; Hill et al., 2016; Arora
etal., 2017; Lin et al., 2017; Conneau et al., 2017b], tree/graph-structure representation [Socher
et al., 2011; Perozzi et al., 2014; Tai et al., 2015; Grover and Leskovec, 2016], and so on. In
particular, contextualized representations of words, though not discussed in this chapter, are
generally appreciated for modeling sequential data [McCann et al., 2017; Peters et al., 2018;
Devlin et al., 2019].

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 4

Recurrent and Convolutional Sequence Models

The whole is more than the sum of its parts.

—Aristotle, 384-322 BC [Ross, 1924]

Aristotle might or might not think of linguistic phenomena when having this thought, but it is
indeed something we want to express in this chapter: there is something different in a sentence
or phrase besides words. Of course, words have meanings, alone. However, when they come
together to form a sentence or phrase, the meaning of the whole could be much more complex
and diverse. This leads to the most beautiful aspect of language that human beings can express
any meaning using a finite set of elements (e.g., words or characters).

The infinite and non-compositional nature of language makes it more difficult to model a
sequence of words than to model individual words. A difficulty is that a word may repeatedly
alter its meaning in different contexts. Taking the idea of word embedding that a word can be
represented as a low-dimensional, real-valued vector, the “meaning” of a language unit could
be continuous. It is therefore possible to extend methods of distributed representation from
words to sequences of words. This leads us to explore models in which the process of dealing
with variable-length word sequences is fundamentally continuous.

Here we consider the general approach to learning the distributed representation of word
sequences. In particular, we consider recurrent and convolutional neural networks which have
been extensively used in many fields ranging from speech processing to computer vision. For
natural language inputs, the result of applying these models is a sequence-level representation
of the input. The representation could be either a single real-valued vector, or a sequence of
such vectors, each corresponding to a contextualized representation for an input word of the
input sequence. Such a model of representation, that can broadly be called an encoder, is
generally used with a variety of systems whose input is sequential data. We will see several
examples of it in this chapter.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

4.1

172 Chapter 4. Recurrent and Convolutional Sequence Models

Problem Statement

For many NLP applications, our objective is to make predictions based on an input sequence.
Let us consider again the text classification problem mentioned in Chapter 1. If we obtain
a text that may talk about food or not, we want to assign one of the two classes to it (say
Food or Not-food). To do this, a common method of classification is to represent the text as a
bag of features, denoted as H. Then, a probability is assigned to each of the classes using a
probabilistic model Pr(y|H). The predicted class is the one that has the maximum probability
¢ = argmax, Pr(y|H).

While this is a standard procedure for classification, the underlying idea can be used to
describe a general problem. Formally, let w = wj...w,, be a sequence of words'. A sequence-
level NLP system can be formulated as a function that maps the sequence w to some output
y. This can be divided into two steps, called the representation (or encoding) step and the
prediction step.

)

* Representation (or Encoding). It transforms the input sequence w to some “features’
H by using an encoder Enc(+):

H = Enc(w) 4.1

* Prediction. A predictor Predict(-) takes H and generates an output:

y = Predict(H) 4.2)

A simple form of H is a feature vector. For example, H could be a set of human-designed
indicator features extracted from w (as a high-dimensional sparse representation), or a set of
real numbers indicating some latent features (as a low-dimensional dense representation). In
NLP, another common form of H is a sequence of vectors in which each vector h; corresponds
to an input word w; (see Figure 4.1). In this case, h; can be viewed as a “new” representation
of both w; and its context in w2. The correspondence between h; and w; enables the represen-
tation to make distinctions among different positions of the sequence, and more importantly, to
vary its modeling power for variable-length inputs.

The form of y is dependent on the problem we intend to deal with. For example, for
classification problems, y is the index of a class (or a distribution of classes); for regression
problems, y is a real number; for translation problems, y is a sequence of words in another
language, and so on. Note that, in the above model, representation and prediction can be
regarded as two separate problems. A great advantage of isolating representation and prediction
is that we can use the same encoder in many applications with different predictors. This also
motivates a promising line of research in which a general-purpose encoder is trained on large-
scale data and then used as components in different downstream systems [Peters et al., 2018;

1Although we restrict ourselves to word sequences for discussion, the methods can be used to deal with
sequences of any language units, e.g., sub-words, characters, etc.

2This architecture can be extended to encoders in which the input and output have different lengths, say, the
input is w1 ...wy, and the output is hy...hy, (m # n).

4.2

4.2.1

4.2 Recurrent Models 173

H (asingle vector) hy hy ... hyp_1 h, =H
T H. T T T T T e
Encoder Encoder
T 7 17T 171 T 7 17T 171
w1 W2 o Wp—1 Wiy wp W2 o Wp—1 Wiy
(a) Encoding the sequence as a vector (b) Encoding the sequence as a vector sequence

Figure 4.1: Representing a word sequence as (a) a vector or (b) a sequence of vectors.

Devlin et al., 2019].

There are many possible forms for Enc(-) and Predict(-). For text classification, for
example, one way is to define Enc(-) as a function computing a feature vector using a set
of hand-crafted feature templates, and define Predict(-) as a statistical classification model
(such as SVMs and maximum entropy-based models). Another way is to define Enc(-) as a
multi-layer neural network that outputs a real-valued vector, and define Predict(-) as a simple
neural network that involves only one Softmax layer. In this chapter we will focus on neural
network-based encoders. We will show that such a type of encoder could be applied to a
number of NLP tasks in Section 4.5.

Recurrent Models

A study of various sequence models is not easy work. It is convenient, however, to first
introduce one of the most common and practical neural models, called recurrent neural
networks (RNNs). We will see later that RNNs are extensively used in sequence modeling,
and the techniques presented here are generic and applicable to many systems.

An RNN-based Language Model

Perhaps the most popular use of sequence models in NLP is estimating the probability of a
word sequence, also known as language modeling. Mathematically, language modeling is an
instance of a well-known problem in the field of stochastic processes (or random processes):
the problem of modeling time series data [Hamilton, 1994; Chatfield, 2003; Fuller, 2009]. As
a time series, a sequence of words can be treated as a sequence of data points at time intervals
that are equally spaced. In this sense, the methods we present here are somewhat general,
although the discussion on a broader range of time series problems is beyond the scope of this
book.

Given a sequence of words wj...wy,, the goal of language modeling is to compute
Pr(w1,...,wy,). This joint probability is typically written as a product of conditional probabili-

174 Chapter 4. Recurrent and Convolutional Sequence Models

ties using the chain rule:
Pr(wi,...,wn) = Pr(w;)-Pr(wswi)---Pr(wp|wi,...,wm—1) (4.3)

In other words, the problem of generating w; ...w, is the same as the problem of generating
a word w;41 at a time based on the previous words wj...w;. RNN-based language models
represent wi...w; via a recurrent unit RNN(-) [Mikolov et al., 2010], like this

hi = RNN(hi_l,Xi> (44)

where x; € R% is the word vector (or word embedding) for w;. Let V' be the vocabulary from
which we can choose a word. If w; € RIV| is a one-hot word representation 2, x; is given by
multiplying w; with the word embedding table C < RIVIxde.
x; = FEmbed(w;)

= w;C 4.5)

As shown in Chapter 1, the use of C transforms a |V'|-dimensional (and probably high-
dimensional) vector to a d.-dimensional (and probably low-dimensional) vector. Note that C
is essentially a lookup table, with a distinct table entry (i.e., a row) for each word in V. So, the
right-hand side of Eq. (4.5) is in practice a function that selects a row from C with the word
index.

Now we go back to Eq. (4.4). The equation is not difficult to understand: the state of
the context we have seen so far (i.e., h;) is some representation of the combination of the
current input (i.e., x;) and the state of the earlier context (h;_;). Put another way, it can be
thought of as a process of repeatedly adding information of a new word to a cache of “history”.
An elegant aspect of this process is that it can be easily implemented by running Eq. (4.4) a
number of times until the end of the sequence.

RNN(+) can be any function that takes h;_; and x;, and produces a new vector h;. The
vanilla RNN has a form

RNN(hi_hXi) = ’(/J(hi_lU-i-XiV) (4.6)

where 1(+) is an activation function, such as TanH(-) and Sigmoid(-). Together with Eqs.
(4.4) and (4.5), we can define h; as a function of h;_; and w;

h, = w(hiflU—F’wiCV) 4.7

where U € Réxdn 'V € Rexdn and C e RIVI*de are learnable parameters of the model, and
dy, is a hyper-parameter indicating the number of dimensions of h; and h;_;.
We now have an encoder that represents the word sequence wj...w,, as a sequence of

3The one-hot representation wj is a |V'|-dimensional vector in which only one entry is 1 and all other entries
are zeros. Following the notation used throughout this book, a vector is in general represented as a variable in bold
text. Here we treat w; as a word index and interchangeably use it with the one-hot representation.

4.2.2

4.2 Recurrent Models 175

RNN’s outputs H = {hj,...,h,,}. Given that each h; encodes the sub-sequence spanning
from w; to w;, we can place a Softmax layer on h; to obtain a distribution of words:

Vi+1 = Softmax(h;O+b) (4.8)
where O € R% >Vl and b € RIV|. Taking the word index w1, we have
Pr(wiyiwi,...;w;) = yig1(wiy1) (4.9)

Thus, we have developed a language model that produces a probability Pr(w;41|wy,...,w;)
at each step. Figure 4.2 shows an illustration of the RNN-based language model for an example
sequence. To run this model on a word sequence, we surely wish to start with predicting w; but
this requires a preceding word wyg that is taken as the input. A simple and widely applicable
method for giving an appropriate starting state to RNNs is to add a beginning symbol (SOS)
to the sequence so that all sequences start with the same “word”. Likewise, we can attach an
end symbol (EOS) to the sequence to model the completeness of the sequence. This leads to a
new form of the probability of the sequence

Pr((SOS),ws,...,wn, (EOS)) = Pr((SOS))-
Pr(w;[(SOS)) -
Pr(ws2|(SOS),w1) -

Pr(wn|{SOS), w1, e 1) -
Pr((EOS)|(SOS), wy ..., wp,) (4.10)

We can simply assume Pr((SOS)) = 1. To obtain Pr((SOS), w1, ..., wn, (EOS)), we take
(SOS) w1...wy, as an input sequence and wy ...w,, (EOS) as the output sequence.

Training
As a neural network, the RNN-based language model can be trained in a regular way. The
training problem has been well discussed in Chapter 2. So, we do not give a full description in
this chapter, but a little bit about its basic idea as well as some refinements.

RNN-based language modeling can be framed as a next-step-prediction problem. Suppose
we are given a collection of word sequences S. For each sequence w = wy...wjy,| in S, we

have a sequence of pairs of an input word and the corresponding gold-standard answer, like
this*

{(w1>w2)a (w27w3)7 ey (wlw\—bw\w\)}

The language model takes the input sequence w...w)y|—1 and returns a sequence of

“While the (SOS) and (EOS) tricks are generally considered in real-world systems, we drop the (SOS) and
(EOS) symbols from now on for simplification.

176 Chapter 4. Recurrent and Convolutional Sequence Models

Pr(w1|wo) Pr((EOS)|wo, - ,wm)
Pr(-|wo)
TOutput Layer T T T
Softmax Softmax e Softmax Softmax
J‘Softmax(hio +b) T T T
Hidden Layer
h; hs h,,_1 h,,
- RNN — RNN == RNN —_— RNN
J\w(hi_lU-l—xi_lV) AN AN AN
Embedding Layer
Embedding Embedding e Embedding Embedding
Fuc T 7 T
wo ((SOS)) wi Win—1 Wi,

Figure 4.2: Illustration of using an RNN-based language model to calculate
Pr((SOS)w;...w,, (EOS)). The input is (SOS)wy...w,,, and the output is the proba-
bility Pr(w;|(SOS))Pr(w2|(SOS) wi)...Pr((EOS)|(SOS) w;...wy). As Pr((SOS)) =
1, the probability of generating the sequence is simply Pr((SOS)w;...w,, (EOS)) =
Pr((SOS)) Pr(w;|(SOS)) Pr(w2|(SOS) w1)...Pr((EOS)|(SOS)w;...w,,). For each input
w;, we first represent it as a word vector x; via the embedding layer, resulting in a sequence
of word vectors Xg...X,,. The RNN layer maps xg...X,, to a sequence of hidden states
h;...h,, 1. In this process, we repeat the same thing: an RNN unit takes both h;_; and x;
and produces a new state h;. On top of that, we use the output layer (Softmax) to obtain
Pr(w;41|(SOS) w;...w;).

distributions ys...y|w- See the following table for an illustration of the inputs and outputs of
the model.

Step History | Input Output Gold-
(One-hot) | (Distribution) | Standard

1 w1 Y2 w2

2 wy | wa y3 w3

3 w1, W2 ws Y4 w4

|W| -2 wl,wg,...,w‘w|,3 w|w|,2 y|w|,1 w‘w|,1

W[=1 | w1,w2,...; Wyw|—3, Wiw|—2 | Wjw|—1 Yiw| Wiw|

A loss function L(y;,w;) is defined to measure how many “errors” we will make if we use
y; instead of the one-hot representation w;. A common choice is the cross-entropy loss which
computes the divergence of a distribution from another [Mitchell, 1997; Bishop, 2006].

4.2 Recurrent Models 177

Then, the loss over the entire set is defined to be

W]

L= 3 > Lyiw) (@.11)

weS i=2

Once we know the loss, the training of the RNN-based language model can be achieved by
using gradient descent. A simple form of this method is the delta rule

oL

% (4.12)

bhew = Ooia—Ir-
where 6 stands for the parameters. For the model described in Section 4.2.1, § includes C,
U,V,0Oandb. g—g is the derivative of the loss with respect to the parameters, called error
gradient.

Eq. (4.12) can be understood as a process of moving the current parameters a small step
in the steepest downhill direction (i.e., the direction of —g—fe‘). Here [r stands for how far we
move in each step of going downhill, also called the learning rate. Obtaining %—g often requires
a back-propagation process that flushes the error gradient from the output to the input. In
modern implementations of deep learning systems, in which neural networks are represented as
computation graphs, back-propagation is simple since it is just a by-product of graph traversal
and there are many automatic differentiation toolkits to do this. Similar algorithms, called
back-propagation through time (BPTT), were also used in earlier systems [Werbos, 1990].
For further information about training neural networks, see Chapter 2 and/or textbooks on this
subject [Goodfellow et al., 2016; Zhang et al., 2021].

If the input is a long sequence, the application of RNNs would result in a deep neural
network. In this case, the use of the chain rule of ordered derivatives makes large or small loss
derivatives accumulate, and the update to the parameters in Eq. (4.12) is consequently very
large or small. These are typically known as the exploding and vanishing gradient problems.
There are several methods to mitigate these problems for RNNs [Sutskever, 2013]. Some of
them are

* Regularization. Introducing regularization terms (such as the /; and /o norms on
parameter matrices) into training can avoid models in which most of the parameters have
large values, and thus help to avoid exploding gradients. Similarly, one can penalize the
cases in which the norms of the gradients are too small [Pascanu et al., 2013].

* Gradient Clipping. When the norm of the gradients is too large, it is natural to directly
scale down their magnitudes. A simple method is to clip the gradient norm in terms of
a threshold 7. If the norm H% || is larger than 7, we can rescale g—g accordingly, say,

oL _ _t OLS5
00 — H@n o6 -
20

St is usually formulated as an equation

oL T oL

= - T .= (4.13)
0 max(r, || 5 1l) 99

4.2.3

178 Chapter 4. Recurrent and Convolutional Sequence Models

* Truncated Back-propagation. Another idea is to break a long sequence of input-output
pairs into shorter pieces, and train RNNs on these separate sub-sequences [Williams and
Peng, 1990; Elman, 1990]. This reduces both the cost of training and the risk of too
large or small values in accumulating error gradients.

e Improved Architectures. It is also possible to redesign the model to overwhelm the
limits of standard RNNs, usually using the memory mechanism. In Section 4.3, we
will see a few examples of redesigning the recurrent unit for addressing the vanishing
gradient problem.

* Initialization and Constraints of Parameters. Initializing the model parameters to
a desirable region is generally helpful for optimization, and, sometimes, helpful for
preventing very small gradients. An alternative method is to randomly set the model and
only learn the parameters of the output layers [Jaeger and Haas, 2004].

* Non-saturating Activations. Many common activation functions have a compact
range of outputs, e.g., the Sigmoid function has a range of [0, 1]. They are also called
saturating activation functions®. The use of saturating activation functions often leads
to the decay of gradients over layers, i.e., the vanishing gradient. It is therefore promising
to use non-saturating activation functions instead, e.g., the ReL U function.

* Normalization of Activations. Saturating activations may also result in getting stuck
in a saturated region of outputs, and we need a large learning rate to escape from
local optimums [loffe and Szegedy, 2015]. Thus, the training would be unstable, and
subtle changes in inputs and/or model parameters would lead to a big variance in model
behavior. A possible solution is to normalize the activations to reduce the variance,
e.g., subtracting the mean of the activations in a group of samples (e.g., samples in a
mini-batch of training), and dividing by their standard derivation.

Layer Stacking

If we think of the application of a recurrent unit as a function mapping a variable sequence to a
new variable sequence of the same length, it is natural to compose this function with another
function of the same type, or even with itself. This makes it very easy to extend RNNs to deep
neural networks: all you need is to stack RNNs.

Let h! be the output of the I-th recurrent unit in the stack at position 4. We can apply a new
recurrent unit to hé, resulting in a new output at level [+ 1

hi™ = RNN(h!*] hl) (4.14)

where hiﬂ is the output of the previous step at level [+ 1. To make Eq. (4.14) well-formed,
we typically define h? = x;. In other words, the stack starts off with the word vector x;, then a
series of RNN outputs (i.e., h}, h?, hf’, etc).

To illustrate, Figure 4.3 (a) shows a stacked RNN for language modeling. We see that

®An activation function f () is non-saturating if and only if when z — 0o (or —oc), f () — oc. An activation
function is saturating if it is not a non-saturating activation function.

4.2 Recurrent Models 179

AN AN AN AN
Layer [+ 2 Layer [+ 2
—| RNN |——| RNN |— RNN RNN [|—
AN AN AN AN
hit? hit!
Layer[+1 ni+ i . Layer [+1 it i et
—| RNN |——| RNN |— RNN RNN [|—
A N A N
h! h!
Layer [Layer [
—| RNN |——| RNN [— RNN RNN |—
AN AN AN AN
position ¢ — 1 position % position ¢ — 1 position %
(a) A 3-layer RNN. (b) A 3-layer RNN with residual connections.

Figure 4.3: 3-layer RNNs (with and without residual connections). To stack RNN layers,
we feed the output of layer [to layer [+ 1. Thus the output of layer [+ 1 is given by
h!™ = RNN(h!T1 hl). Lines in red color stand for the residual connections which directly

add the input of a layer to its output, resulting in hé“ = RNN(héﬂ, h!) +h!.

applying a stack of recurrent units is equivalent to creating multiple layers of RNNs simultane-
ously. However, there would be a risk of confusion if we call an unrolled recurrent network
a layer, as the term layer typically refers to a set of neurons receiving the same inputs in a
feed-forward neural network. Here we extend the term layer to cover a more general concept:
a group of neurons that are topologically placed on the same level. So, we say that the language
model in Figure 4.3 has 3 RNN layers.

Stacking multiple layers of RNNs, we build a model which is deeper but more difficult
to train. This difficulty arises in part from the barriers of passing information through many-
layered RNNs. To make the training easier, a widely-used approach is to introduce skip
connections or residual connections into a multi-layer neural network [He et al., 2016a].
These connections are intended to leverage an additional path to allow information to skip
layers. As described in Chapter 2, the form of a residual neural network is given by

y'tt = FPiyh+y! (4.15)

where y' is the output of layer /. Extending this formulation to Eq. (4.14) leads to multi-layer
RNNs with residual connections, given by

hit! = RNN(h!*] h))+h! (4.16)

4.2.4

180 Chapter 4. Recurrent and Convolutional Sequence Models

The only difference from Eq. (4.14) is that we introduce the identity map of hé to the
right-hand side of Eq. (4.16). Thus, the input hé is directly accessible from layer [+ 1. This
greatly simplifies the way that the information flows through the neural network, and allows
the system to “skip” layers in propagating errors. Figure 4.3 (b) shows a 3-layer RNN with
residual connections.

Bi-directional Models

The use of RNNs enables us to formulate the problem of encoding a word sequence as a
problem of left-to-right generation of words. One advantage of this approach is that the
modeling of context words arises naturally: the output of an RNN unit in some way describes
the history words up to that point. This feature makes it very straightforward to model the
probability distribution Pr(w;1|ws,...,w;), as we can use h; as a representation of the context
w1...w;, that is, Pr(le |w1, v wl) = Pr(wi+1 |hl)

The left-to-right generation is widely used in sequence generation, such as machine
translation. It can be viewed as an instance of autoregressive processes (AR processes) in
which the state of a variable is dependent on the state of the previous variables [Chatfield, 2003;
Box et al., 2015]”. However, such a method is not the only choice for modeling sequences.
We do not even necessarily restrict ourselves to language modeling for training a sequence
encoder. This gives rise to an interesting question: how can we develop an encoder of word
sequences without assumptions regarding the predictor? Answering the question leads us to
isolate the learning of the text encoder from a specific NLP task, and to regard it as a separate
task whose result can be applied to many other systems. A more detailed discussion is not the
focus here and we leave it to subsequent chapters.

We now present a simple extension of the left-to-right sequence model by returning to
RNNs. Note that in sequence modeling our desire is some representation of the entire sequence.
A problem with usual RNNs is that they are uni-directional models in which the context
words following w; are absent. To consider both the left and right contexts of a given word,
we can instead use bi-directional models. Figure 4.4 shows an example of the bi-directional
RNN. There are two sub-models: a left-to-right RNN and a right-to-left RNN. They have the

7 As a stochastic process, an autoregressive process expresses a variable at time ¢ by relating it to the past values
of the process and the current value of an error process [Chatfield, 2003]. Formally, a time series {z1,..., 27}
describes an autoregressive process of order p if forany ¢t € {p+1,..., T}

P
w =) aiz-ite @.17)
i=1

where {a,...,ap} are the parameters of the process, and e; is the error at time ¢. This process is called regressive
because it has the same form as the multiple linear regression model. The prefix aufo- comes from the way we
regress z¢: z¢ is dependent on its past values instead of additional independent variables. One way to interpret
language modeling in an autoregressive process perspective is to simply treat {21, ..., 2} as representations of a
sequence of words {w1, ..., wr }. Thus, we can gain some idea of predicting w¢ using previous words {wy, ..., w¢ }
by considering the autoregressive property of the problem. However, it should be noted that most of the sequence
generation models used in NLP are not mathematically equivalent to Eq. (4.17), although they are often called
regressive models. For example, the RNN-based language model discussed here is not a linear model. Rather, it
takes layers of non-linearity to describe the complex relationships among words.

4.3

4.3 Memory

181

%
h;_; = [hz‘—hzi—l]

;

RNN
(right-to-left)

RNN
(left-to-right)

|

i

=l

h

;

i = [ﬁi, ﬁi]
i
RNN

(right-to-left)

RNN
(right-to-left)

RNN
(left-to-right)

RNN
(left-to-right)

i

i

Embedding Embedding Embedding
Wi—1 Wy Wi+1

%
hiy1 = [hz‘+17ti+ﬂ

!

Figure 4.4: A bi-directional RNN model. Given a word sequence, we run an RNN from left to
right and another RNN from right to left. Therefore, at each position we obtain a left-to-right
representation and a right-to-left representation. The output is the concatenation of the two
representations so that it involves both the left and right contexts.

same architecture but work in opposite directions. For each input word w;, the left-to-right
RNN outputs a vector representing the context {w,...,w; } (denoted by h;), and the right-

to-left RNN outputs a vector representing the context {w;, ..., wy, } (denoted by h ;). We can
concatenate h; and h; to obtain a bi-directional representation
_)
h; = [h:hy 4.18)

Thus, the bi-directional RNN has the same form of output as that of the uni-directional RNN,
that is, a sequence of vectors {hy,..,h,, }. Unlike the uni-directional RNN, the representation
h; here describes the context on both sides.

For a stronger model, the bi-directional RNN can be extended to a neural network of
multiple RNN layers. For example, we can run deep RNNs in two directions and combine their
results as in Eq. (4.18). Such model architectures have been extensively used in language and
speech processing tasks, including machine translation [Wu et al., 2016], sentiment analysis
[Tang et al., 2015], POS tagging [Huang et al., 2015], speech recognition [Graves et al.,
2013a;b], and so on.

Memory

RNNs can be appropriate for sequence learning in which we summarize at each step the past
inputs and then make some prediction on this summary of the “history”. A benefit of RNNs is
that we can represent a history of arbitrary length as a fixed-size vector, and update it when

4.3.1

182 Chapter 4. Recurrent and Convolutional Sequence Models

new information arrives. In other words, we have a memory, though not explicitly defined, to
store the information. Next we show that such a memory mechanism is general and can be
used to improve sequence models.

Memory as A System

In psychology, memory is the ability of the mind to retain and recall information. There
are many cognitive models of psychology. A well-known model is the multi-store model
[Atkinson and Shiffrin, 1968]. It defines memory as a system consisting of three components:
short-lived sensory memory, short-term memory, and long-term memory. The sensory
memory retains the sensory information that is very quickly ceased, such as immediate data
from the senses of sight and smell. The short-term memory stores information for a longer
time but is not permanent. An example of the short-term memory is that we try to memorize a
sequence of digits (e.g., a phone number) but may forget it after a short while. The long-term
memory is permanent. This also means that the information is retained indefinitely. For
example, adults can remember details of the events that occurred in their childhood.

Given this categorization, there appear to be interesting connections between the above
model of memory and the neural networks we discuss here. For example, the state of a recurrent
unit can be simply thought of as a short-term memory. It maintains information until we get
to the end of a sequence and would be reset if we switch to a new sequence®. On the other
hand, the entire language model and associated parameters perform more like a long-term
memory: the language model is intended to learn and memorize some useful information
about probabilistic word prediction from the text, so that it can be used whenever we want
to. Moreover, there are other concepts that may stem from psychology but are used in several
different fields. For example, coding or encoding is referred to as how the information is stored
in a memory, duration is referred to as how long the information is stored in a memory, and
capacity is referred to as how much information is stored in a memory.

In machine learning and NLP, we can gain an understanding of memory by considering it
from an information processing point of view. Broadly, memory can be viewed as a system
that writes information to a “storage” and reads it when queried. It has the following functions.

* Encoding. The input of the system is encoded in a form that is easy to process. For text
inputs, this can be simply thought of as the same encoding process as we discuss in both
Chapter 3 and this chapter: a word or a sequence of words is represented as a feature
vector or a sequence of feature vectors.

» Update. Given the encoded information, we store it in the memory. This operation is
generally dependent on the organization of the memory. For example, one can treat a
group of encoded items as a datastore with an indexing system. In this case, storing
an item requires finding the right place to keep it. Alternatively, one can represent the
memory as a single vector of numbers.

* Retrieval. The stored information can be retrieved. This typically involves matching

8 Another explanation is that the state of a recurrent unit at step ¢ may contain little information about very early
steps.

4.3.2

4.3 Memory 183

each item in the memory against an input query. If the memory is represented in a
simpler form, such as a vector, it may not be explicitly retrieved, and we return the entire
memory when required.

These functions can be designed in many different ways, leading to a variety of NLP
systems. One simple example is information retrieval [Manning et al., 2008]. A typical
information retrieval system indexes a large number of documents (or other resources) and
allows users to search for interested information in this collection of documents. To enable
search, documents are represented in forms that are convenient to use, for example, we may
use the bag-of-words model to compute the matching score between a document and a query,
and may use the inverted index to make an efficient mapping of a document to its location
in the storage. Systems of this type cover a wide range of applications, including translation
memory, dialogue, summarization, document classification, and so on.

Another design choice made for memory systems is to consider, either partially or fully,
a continuous form for the above components. One method is to encode each input item as a
real-valued vector (e.g., a word embedding) but use the same modules of update and retrieval
as in usual information retrieval-like systems [Weston et al., 2015; Khandelwal et al., 2019].
An alternative method is to adopt differentiable functions for all the steps in building and
accessing the memory. These models are typically implemented using neural networks and
trained using gradient descent [Sukhbaatar et al., 2015; Graves et al., 2014; Kumar et al., 2016;
Graves et al., 2016; Miller et al., 2016]. This idea motivates work on exploring approaches to
coupling neural networks with memories, such as end-to-end memory networks and neural
Turing machines. Note that the above models are sometimes called external memories, as
they are used as separate modules working with other systems.

Memory can also work as an internal or hidden component of a system. In this case, the
memory is typically rebuilt for each input sample, and so it can be regarded as an instance of the
short-term memory. There are various ways of using this type of memory to improve sequence
models. In the remainder of the section, we will focus on using the memory mechanism
in RNNs. In Chapter 5, we will see how the idea of memory is extended to model the
correspondence between tokens of two sequences.

Long Short-Term Memory

In the vanilla RNN presented in Section 4.2.1, the summarization of the context words was
given by the output of a recurrent unit. It implicitly defines a memory, and thus enables the
prediction based on past information for an arbitrary duration. The memory simply combines
the representations of the earlier history wj...w;_1 and the input at the current step w;, but does
not consider how much information from different steps should be squeezed into a fixed-length
representation. A problem with this model is that, if long-term dependencies are required for
prediction, memory may provide little information about it, and it may be hard to learn these
dependencies through back-propagation [Bengio et al., 1994; Pascanu et al., 2013]. A more
powerful approach, therefore, is to compute what should be retained at each step, and to let the
model learn to decide whether to memorize or forget.

184 Chapter 4. Recurrent and Convolutional Sequence Models

Long short-term memory (LSTM) is perhaps the best-known variant of RNNs to accom-
plish the above goal [Hochreiter and Schmidhuber, 1997]. The basic idea of LSTM is that a
recurrent unit can learn to memorize useful things and forget unuseful things by maintaining an
explicit memory [Gers et al., 2000]. To this end, the vanilla recurrent unit is replaced with an
LSTM unit that is made up of an output vector (call it a recurrent cell), a memory vector (call
it a memory cell), and three gates to control the information flow inside the LSTM unit. As an
extension to RNNs, an LSTM network deals with an input sequence as usual: it starts with
some initial states, and then repeatedly takes an input and outputs a vector. A key difference
between LSTM networks and RNNs is that the LSTM unit of step ¢ takes both the recurrent
cell and the memory cell of its previous step. The form of an LSTM unit is given by

(hi,Ci) = LSTM(hi_l,Ci_l,Xi) (419)

where h; € R% is the recurrent cell of step i, c; € R% is the memory cell of step i, and
x; € R% is the input of step i. Given LSTM(-), applying the LSTM model is straightforward.
We simply repeat the call of LSTM(:) for the inputs {x1,...,X,,} and obtain the outputs
{hi,...,h;,}. This resembles the way we use vanilla RNNs, making it very easy to extend
LSTM to multi-layer models (see Section 4.2.3) and bi-directional models (see Section 4.2.4).

We can divide LSTM(-) into three steps.

» Step 1: Forget. Assuming that c;_; contains the information that the model memorizes
at step ¢ — 1, we need to determine how much information in ¢;_1 is discarded in building
c;. To do this, a gate is used to control to what extent we forget for each dimension of
c;—1. The forget gate is defined to be:

f; = Sigmoid(hi_lUf +x;Vi+ bf) (4.20)

where f; € [0,1]% is a vector with the same number of dimensions as c;_1. The Sigmoid
function maps the input data to the range [0, 1]. Thus, an entry of f; indicates how much
is preserved for the same entry of c;_;. Taking this further, f; ® c;—; describes the
memory that is left out after passing through the forget gate. See Figure 4.5 (a) for an
illustration of the forget gate in the LSTM unit.

» Step 2: Update. Next we update the memory by considering both the previous state
of the memory (i.e., c;—1) and the input of the LSTM unit (i.e., x; and h;_1). We first
combine x; and h;_; using a simple neural network, like this

¢, = TanH(h;—1U.+x;V.+Db,) (4.21)

C; can be treated as the new information we intend to add to the memory at step ¢. Again,
we need a way to control the amount of information coming into the memory. Hence we
define an input gate as

g = Sigmoid(hi,lUg—l—xng—l—bg) 4.22)

4.3.3

4.3 Memory 185

This equation is similar to Eq. (4.20) but with different parameters. We then define
gi ® ¢; to be the actual new information that we are interested in. Taking both f; ©® c;_1
and g; © ¢;, the memory cell at step ¢ is given by

¢, = i0c_1+g0¢ (4.23)

In other words, we forget something old in c;_; and memorize something new in ¢;.
See Figure 4.5 (b) for an illustration of the update step.

* Step 3: Output. In the last step we generate the output h; based on the memory c;.
Instead of copying c; to h;, we feed c; to a hyperbolic function and multiply its result
with the output gate. Like Egs. (4.20) and (4.22), the output gate is given by

o, = Sigmoid(h;_1U,+x;V,+by) (4.24)
Then, the output of the LSTM unit is defined to be
h;, = o;®TanH(c) (4.25)

See Figure 4.5 (c) for an illustration of the output step.

The LSTM model is parameterized by U, U, U,, U, € Rnxdn Vi, Vi, Vi,V €
R xdn and by, b, bg,b, € R? . Compared with vanilla RNNs, additional parameters are
introduced here because of the use of three gates. In practice one can implement them in many
different ways, e.g., using activation functions other than Sigmoid(-) and TanH(-), removing
the bias terms by, b, bg, and b, and so on. Training LSTM models follows the standard
paradigm of training RNN-based models. For example, we can build an LSTM-based language
model and train it by using the methods presented in Section 4.2.2.

Gated Recurrent Units

Above, we saw the important role played by the gate units and the memory cell. In general the
use of these neural networks makes the model computationally more expensive. An alternative
to LSTM in a cheap case, namely gated recurrent units (GRUs), uses a simplified model
structure with fewer gate functions [Cho et al., 2014; Chung et al., 2014]. Unlike LSTM, a
GRU does not have a memory cell so, as an RNN unit, it takes both the previous state vector
h;_; and the current input vector x;, and produces the current state vector h;.

In GRUs, there are two gate units: the reset gate and the update gate. The reset gate, as
the name suggests, is used to reset (or rescale) the state of the GRU (i.e., h;_1). Following the
gate functions used in LSTM, the reset gate is defined to be

r; = Sigmoid(h;—1U,;+x;V,+b;) (4.26)

where r; € [0,1]% is a vector of scalars, each dimension describing how much information in
the corresponding dimension of h;_; is retained. Thus, we have a representation of retained

186 Chapter 4. Recurrent and Convolutional Sequence Models

Sl x> fioei

Forget Gate

(a) The forget gate.
Ci—1 ' 3o
T g O¢; Forget Gate
Input Gate
8i é;
(Gateﬂ) | FFN |
neL == 7

(b) The input gate.

h/
4
Forget Gate
(g Input Gate

Output Gate

TanH
(O]
o

h
i—1

(c) The output gate.

Figure 4.5: The architecture of the LSTM unit. At step ¢, it takes the input x;, and then updates
both the memory cell (¢c;—1 — ¢;) and the recurrent cell (h;_; — h;). This process involves
three gates: the forget gate controls how much information in c;_; is retained at step ¢, the
input gate controls how much information in c;_; and x; is retained at step ¢, and the output
gate controls how much information in c; is used to form h;.

information

vi1 = 1;0hi 4.27)

Taking both the retained information v;_; and the current input x;, a new state vector is defined

4.4

4.4.1

4.4 Convolutional Models 187

to be
h; = TanH(v; 1Uy+x;Vy+by) (4.28)
The update gate is then given by
u; = Sigmoid(h;_1U,+x;V,+Dby) (4.29)

u; can be thought of as a coefficient vector which could be used to control the trade-off in
choosing the new state vector h; or the old state vector h;_;. Finally, the output of the GRU is
defined as a linear interpolation of le and h;_1

h;, = uw,0h;+(1—-u;)®Oh;_; (4.30)

Figure 4.6 shows how the information flows in a GRU unit. The parameters here are
U,, U, U, € R&xdn V.V, V, € ReXd and b,,by,b, € R . Therefore, the GRU
model is smaller than the LSTM model because of the use of fewer gate units. Note that
removing the memory cell makes GRUs more efficient. In this case, the role of memory is
implicitly played by GRU’s output h;, and we maintain it by memorizing more “important”
information.

Convolutional Models

In this section we describe another type of model for sequence modeling, called convolutional
neural networks (CNNs). Our description is mostly standard, but not a full introduction to
the numerous variants of CNNs and cutting-edge techniques. In particular, we focus on using
CNN s to deal with sequential data and presenting some refinements.

Convolution

CNNss feature their shared-weight architectures by which a kernel or filter slides over the input
data and produces a map of features. The idea is that the filter only receives signals from a
restricted region of data at a time (call it the receptive field), and computes the weighted sum
of these input signals. To illustrate this, we follow the convention that a filter in CNNs is
generally used to deal with 2D data. Consider a 3 x 3 data matrix

19 7
A = 1[31 2 4.31)
01 -1

and a 2 x 2 filter with a weight matrix

W = [2 0] 4.32)

188 Chapter 4. Recurrent and Convolutional Sequence Models

: Reset Gate

(a) The reset gate.

(b) The update gate.

Figure 4.6: The architecture of the GRU. Unlike the LSTM unit, the GRU does not involve
a memory cell, and thus follows the same input and output forms of a standard RNN unit.
There are two gates in the GRU. The reset gate controls how much information in h;_; is
retained at step ¢. The retained information is then taken to fuze with the input x;, generating
the candidate output h;. The update gate seeks a balance between h; and h;_; in computing
the final output of the GRU.

We can apply the filter to every 2 x 2 sub-matrix of A (there are four 2 x 2 sub-matrices here),
and compute the sum of the 2 x 2 entries weighted by W. For example, consider the 2 x 2
sub-matrix in the upper left corner of A. The output of the filter is given by

1 1 2
Conv([3 El)] ,W) = Conv(5 ? ,[2 g)
= 1x249x04+3x2+1%x2
= 10 (4.33)

Conv(-) defines a convolution operation that sums the entries of the element-wise product
of the two matrices. The convolution operation can be extended to cover the entire input matrix

4.4 Convolutional Models 189

by sliding the filter over it, as follows

19 7
Conv(A,W) = Conv(|3 1 2 |,W)
01 -1
Conv(L9 ,W) Conv(97 , W)
3 1 1 2
a 1 1 2
Conv(s , W) Conv(, W)
0 1 -1
10 24
= 4.34
3 9 (4.34)

10 24
The output 80 9 is also called the feature map for the filter W on A. Sometimes,

the convolution operation Conv(A, W) is written as A «* W where the symbol = stands for
the convolution product.’

Now let us consider a more general description of convolution in CNNs. Suppose that A
is a multi-dimensional data array. A filter defines a window (or receptive field) on A. We can
move the window on A in different directions. This results in a set of data arrays, denoted by
€. Each data array a,, €) is formed by the elements from the corresponding region of A. For

9 9 7 3 1

1
example, there are four sub-matrices in Eq. (4.34)): a; = 3 1 , a9 = 1 9 ,a3 = 0 10’

1 2
and a4 = 1 1 Also, we suppose the filter is parameterized by a weight array W with the
same size of a, i.e., |a,| = |[W/. The result of applying the filter to A is an array of features

Conv(A, W) = [Ul vmd (4.37)

°In mathematical analysis, given two integrable functions f(-) and g(+), convolution defines a new integrable
function f * g(+) to describe the integral of f(-) weighted by reflected, shifted g(-). More formally, the convolution
for continuous functions is defined as

f*g(z) = JRf(y)g(w—y)dy (4.35)

where f(y) is the function that we are concerned with, and g(z — y) is the weight function which is translated by
reflecting g(y) along the y-axis and then shifting it by x. A special case is that « and y are both integers. In this
case, we can define f*g(-) as

frglx) = D f)glz—y) (4.36)

Y

which is the basic form of Eq. (4.33). In CNNS, z, y and 2 — y can be seen as indices of items in data arrays. f(y)
is a data item in the input array, and g(z — y) is the corresponding weight in the filter. By using Eq. (4.36), we
calculate the value of the item indexed by z in the output array f * g(x) (i.e., the feature map).

4.4.2

190 Chapter 4. Recurrent and Convolutional Sequence Models

Each feature v, is given by

v, = Conv(a,, W)
= a, W
W]

= > ay(k)-W(k) (4.38)
k=1

where a, (k) and W (k) are the k-th elements of a,, and W, respectively. Note that the array

[vl ... Ujq|| can be organized into different shapes, such as a matrix or a 3D tensor, though
they are essentially the same thing from the data storage viewpoint. For example, for 2D input
data and a 2D filter, the feature map is a matrix like Eq. (4.34).

Furthermore, we need to consider two things to make the model practical. First, we need
to specify the stride of each move of the filter over A. In the above example, we simply use
stride = 1. By choosing a larger stride, we can compress A into a smaller number of features.
Second, in some situations, to ensure that the feature map has a desired size, we can add
dummy elements (or paddings) around the input data. A common method of padding is to set
zeros to the elements outside the input region. For example, consider a 2 x 2 data matrix.

19
A = !7 3] (4.39)

‘We can add zero-valued entries around it to obtain a 4 x 4 matrix, like this

0 00O
01 920
Apadding = 07 3 0 (440)
0 00O
Using the same filter as in Eq. (4.33) with stride = 1, we have a 3 x 3 feature map
2 20 18
Convipide—1 (Apadding, W) = |14 22 24 (4.41)
0 14 6
If stride = 2, then we would have a feature map with the same size of the input data
2 18
Convstride:Q(Apadding7 W) = [0 6] (4.42)

CNNs for Sequence Modeling

Following the formulation in the previous sections, we assume that the input of a sequence
model is a vector sequence X;...X,, and the output is another vector sequence h;...h,,. For
example, we can think of x;...Xx,, as a matrix X € R™*de in which the i-th row vector is the

4.4 Convolutional Models 191

Filter 1

padding

Figure 4.7: Two filters applied to a sequence of word vectors. The input involves ten word
vectors (words X;...Xg and two padding words on each of the two ends of the sequence). Each
word vector has 6 dimensions, and so, the input is a 10 x 6 matrix. Filter 1 has a receptive
field of size 3 x 6. By sliding it over the input matrix, we obtain a sequence of outputs, each
corresponding to a position (i.e., a sequence of 6 outputs). Similarly, we apply filter 2 to the
input sequence and obtain another sequence of outputs. The two output sequences are then
organized as a 2 X 6 matrix in which the ¢-th row vector is h;.

representation of the ¢-th word of the sequence.

It is straightforward to perform convolution on X. Since Xx; is just a set of unordered
features, it is not necessary to slide a filter over different features. Hence we can use a receptive
field of size r X d., and consider all the dimensions of x; in the convolution operation. In
practical applications, there might be multiple filters for representing the inputs in different
aspects. For example, one can use a filter with a large receptive field to involve more contexts
in modeling, and use a filter with a small receptive field to concentrate more on local features.
See Figure 4.7 for two filters that are used to deal with a sequence.

To distribute features to {hj,...,h,,}, we can associate each application of a filter to a
position of the sequence. To ensure the input and output sequences are of the same length, a
padding vector is added to each end of the sequence. The following shows the input and output

192 Chapter 4. Recurrent and Convolutional Sequence Models

of a CNN for an example sequence.

Position | Input Receptive Field | Output
0 xo(=0) | N/A N/A

1 X1 {x0,X1,%X2} h;

2 X9 {x1,%2,x3} hy

3 X3 {x2,x3,%4} h;

4 X4 {x3,%4,X5} hy

5 x5(=0) | N/A N/A

An activation function is typically used to introduce some non-linearity to the final output.
In this way, we build a standard convolutional layer which can be viewed as a sequence of
fully connected neural networks, each taking inputs from a fixed-size window. For the i-th
position, the output of the convolutional layer is given by

v; = (Conv(a;, W)) (4.43)

where a; is the inputs in the receptive field'?, and W is the parameters of the filter. In situations
involving multiple filters (say dj, filters), we have a set of parameters {W(l), ...,W(dh)}, a
set of activation functions {1, ...,1)(4»)}, and a set of inputs {agl), ...,al(-dh)}. Each tuple
(W) k), agk)) gives an output by

o = p® (Conv(a® W) (4.44)

Note that vi(k) is simply an entry of h;. Thus, h; can be written as
h, = [o) . ol (4.45)

Many CNN-based systems of practical interest comprise two or more convolutional layers.
The simplest way to achieve this is layer stacking, as in multi-layer RNNs (see Section 4.2.3).
That is, we treat the output of a convolutional layer as the input of the following layer. See
Figure 4.8 for an example of a CNN involving three convolutional layers. One of the benefits
of multi-layer CNNs is a larger scope for representation. As seen from Figure 4.8, a neuron in
layer 1 connects three input vectors, while a neuron in layer 3 connects, though not directly,
seven input vectors. Since neurons of the higher-level layers receive and process signals
from a larger span of the sequence, they are expected to produce a higher-level representation
of the sequence and to be able to deal with more difficult problems, such as long-distance
dependencies.

In some applications, we need a fixed-length, low-dimensional representation of the entire
sequence. A common way is to add a pooling layer to merge {hy, ..., h,, } into a single vector.
For example, we can select the maximum value (i.e., max-pooling) or average the values (i.e.,

OFor an r x d receptive field, a; is defined to be {xfi*%T ,...,er%,ﬂ} or {XLF%J s X[E 1] 1.

4.4.3

4.4 Convolutional Models 193

> Scope for Representation

Layer 3 CNN CNN CNN CNN CNN
P O PN
Layer 2 0 CNN CNN CNN CNN CNN 0
I
Layer 1 0 CNN CNN CNN CNN CNN 0
DN
Input 0 X3 X9 X3 X4 X5 0
Padding Padding

Figure 4.8: A CNN with 3 convolutional layers (stride = 1 and r = 3). Each layer takes a
sequence of vectors and produces another sequence of vectors. In this process a filter moves
over the input and performs the convolution operation in each move. In layer 1, the receptive
field of the filter is a region of three input items (see green shadows). The higher a layer is,
the larger receptive field a filter has. For example, in layer 3, an application of the filter can at
most cover the entire input sequence (see orange shadows).

max-pooling) along each dimension. This is a generic method in machine learning and is
applicable to most of the sequence models discussed in this book.

Handling Positional Information

One interesting property of CNNss is their ability to balance complexity and efficiency. This
is achieved by restricting full connectivity to only a small region of the input data. This also
leads us to describe a convolution layer using the same mathematical form of a layer in a
fully-connected neural network: the output of a neuron is some transformation of the weighted
sum of the input numbers. Despite the simplicity inherent in modeling, a problem with such
models is that the order of inputs is completely ignored. An interesting point, however, is
that, if we restrict ourselves to sequence modeling, this should not be a problem because the
output of the model is itself a sequence. It seems reasonable to assume that the output sequence
preserves the ordering information of the input sequence. On the other hand, applying CNNs
to sequential data does not guarantee a one-to-one mapping between the input and output items.
Technically, h; is not simply a representation of x;. It instead encodes a window of inputs
centered at x;. This, in turn, makes the problem very complicated, since it is difficult to work
out from h; how those inputs are ordered.

194 Chapter 4. Recurrent and Convolutional Sequence Models

Explicitly modeling word orders is very important in NLP, and has been extensively
studied in tasks like machine translation [Lopez, 2008; Koehn, 2010]. For neural network-
based models, one may address the problem by resorting to order-sensitive model architectures
like RNNs. A more popular approach in recent systems is to develop a positional encoding
sub-model and incorporate it into existing sequence models [Gehring et al., 2017b; Vaswani
etal., 2017; Shaw et al., 2018; Dufter et al., 2022]. Formally, we say that the input at position ¢
is a combination of the original input x; and the positional encoding of i (denoted by PE(+)):

xp; = Merge(x;,PE(i)) (4.46)

where Merge(-) combines x; and PE(4) in some way. The use of positional encoding is
straightforward: all you need is to replace {x1,...,X,,} with {xpy,...,xp,,} in a sequence
model. So, this approach is model-free.

In this subsection, we present several versions of PE(+) and ways to combine them with
x;. Note that the following discussion is not specific to CNNs. We consider it here because
positional encoding is useful for models that are insensitive to the order of inputs, and CNNs
are a good example to see how it is used [Gehring et al., 2017a;b]. In Chapter 6, we will see an
application of positional encoding in Transformer which is a state-of-the-art neural model in
many areas.

1. Offset-based Positional Encoding

The simplest way to describe a position 7 is to just leave it as it is. This can be formulated as
the “distance” from a reference point

PE(i) = i—ip (4.47)

where i is an integer indicating where we start counting. If iy = 0, PE(4) = ¢ gives the normal
way to define a position. Note that PE(7) could be a negative number if iy > 4. In this sense,
PE(7) is not a real distance but it is fine with considering it as a feature in a machine learning
system. To design a non-negative measure, the right-hand side of Eq. (4.47) can be defined as
an absolute value

PE(i) = |i—io (4.48)

Treating positions as simple integers leads to unbounded, discrete positional encoding.

A more desirable method might be to use a continuous representation in a range of values,

because it allows the system to work within a sample space that is smooth and easy to optimize.

A simple way to do this is normalization. For example, dividing ¢ — 79 by some maximum
value, we obtain a normalized version of the offset-based encoding

PE()) = — 0 (4.49)

tmax — %0

For example, we can set i, = the maximum possible length of the sequence and iy = 0,

4.4 Convolutional Models 195

so that PE(4) chooses its value in [0, 1]. Another common choice is to set imax = m (i.e., the
length of the input sequence) and define PE(7) as a ratio whose value varies as m changes.

To make use of these scalar positions, it is straightforward to enrich the original input
vectors by adding new dimensions, provided they can be viewed as new features. Thus, xp; is
given by

xp; = [x;,PE(i)] (4.50)
where [-] stands for the concatenation operation.

2. Sinusoidal Positional Encoding

The next obvious step is to represent positions as vectors instead of scalars. Although vector-
izing the representations of positions sounds complicated, a simple idea is to use a carrying
system which describes how a natural number is expressed by a polynomial with respect to a
base [Kernes, 2021]. For example, ¢ can be written as

kmax

io= Y a(i,k)p* (4.51)

k=0

where a(i, k) is the k-th digit, kpax + 1 is the maximum number of digits, and b is the base of
the system. The carrying occurs when a(i, k) reaches b: we increase a(i,k+ 1) by 1 and roll
back a(i, k) to 0. In this way we can change a(i, k) with a period of b¥, that is, a(i,0) changes
with a period of b°, a(i, 1) changes with a period of b', a(i,2) changes with a period of b2, and
SO on.

Using this system, ¢ can be represented as a vector

PE(i) = [a(z’,O) a(i,1) .. a(i,kmax)] (4.52)

For example, when b = 2, PE(11) = [1 10 1] However, in Eq. (4.52), PE(i) is still
a discrete function. As discussed throughout this book, we may want a continuous vector
representation that can describe intermediate states between discrete events. Considering
a(i,k) as a periodic function, a common choice is the sine function. Thus a(i,k) can be
re-defined, as follows

a(i, k) = sin(i-wg) (4.53)

This function has an amplitude of 1 and a period of 3)—: Using an analogous form of periods to
that used in Eq. (4.51), we define wy, as

L (4.54)

wp = —— .
(bmodel)k/dmodel

where bpodel > 0 and dpoder > 0 are hyper-parameters of the model. Obviously, we have
21 2 27
= o1 <<

wo Whkmax

196 Chapter 4. Recurrent and Convolutional Sequence Models

1
2
00 0.5
=
S 0
Z 100
o
~0.5
0 -1

0 100 200 300 400 500
feature dimension (k)

Figure 4.9: A heat map of the positional embedding model of Eqs. (6.14) and (6.15) (bmodel =
10,000 and dyege1 = 512). Consider a position ¢ (i.e., the ¢-th row), then move another position
j from ¢ upwards or downwards. Intuitively, when ¢ and j are closer, the corresponding row
vectors are more similar. By contrast, when j moves away from %, the similarity is not that
obvious. This property helps explain the idea behind the positional embedding model: the
“distance” between two positions is implicitly modeled by comparing their multi-dimensional
representations.

Similarly, we can define a(i, k) via the cosine function

a(ik) = cos(i-wg) (4.55)

Taking both Egs. (4.53) and (4.55), we create a new representation of ¢, as follows

PE(i) = [Sin(i-wo) cos(i-wp) ... sin(i-wg,,,) cos(z’~wkmax)] (4.56)

Vaswani et al. [2017] instantiated the above form by setting byode; = 10,000. Let PE(4, k)
be the k-th dimension of PE(7). Vaswani et al. [2017]’s version of positional encoding is
written as

1

PE(’L, 2]{) = sm(z . m) (457)
. . 1
PE(Z, 2k + 1) = COS(’L : m) (458)

Choosing bmoedel = 10,000 is empirical. One can adjust it for specific tasks. Figure 4.9
plots the positional encoding for different positions. We see that, when k£ becomes larger, the
change of the color follows a larger period.

Note that Egs. (6.14) and (6.15) have a useful property that PE(i 4 u) can be easily

4.4 Convolutional Models 197

expressed by a linear function of PE(7) for a given offset y'!

PE(i+u,2k) = PE
PE

PE(i+u,2k+1) = PE
PE

i,2k)-PE(u,2k + 1) +

i,2k+1) - PE(y, 2k) (4.61)
i,2k+1)-PE(u, 2k +1) +

i,2k) - PE(u, 2k) (4.62)

—~ o~~~

The resulting benefit is that the encoding can somewhat model relative positions. That is, the
state at position ¢ + u can be described by starting with ¢ and then appending it with the offset
L.

When applying the sinusoidal positional encoding, one way is to use Eq. (4.50) to
concatenate x; and PE(7). In Vaswani et al. [2017]’s work, they instead assume PE(7) to be a
vector of the same size as x; (i.e., |PE(7)| = |x;| = d¢), and add PE(7) to x;, like this

xp; = x;+PE() (4.63)

This sinusoidal additive model has been the basis of many positional encoding approaches
[Dehghani et al., 2018; Likhomanenko et al., 2021; Su et al., 2021].

3. Learnable Positional Encoding

The result of sinusoidal positional encoding is a lookup table Cpy € R max xde (where Mypqz
is the maximum sequence length we can choose)

PE(1)
Cpg = (4.64)
PE(mMmax)

In this table, each row vector PE(i) corresponds to the embedding of a position i. These
vectors, as described above, are computed based on some assumptions and heuristic algorithms.
An alternative approach is to treat vectors of positions as parameters of the model and learn
them as usual. In this case, both word embeddings and position embeddings can be trained in
the same manner. See Chapters 2 and 3 for more information about learning word embeddings
in neural language models.

One last note on positional encoding. What we have shown in this section can broadly
be characterized as an absolute positional encoding paradigm: a position is described by its
location in a coordinate system. Another concept that is worth exploring is relative positional
encoding [Shaw et al., 2018]. For example, we can extend Eq. (4.48) to define the distance

"'One can derive these by taking

sin(a+8) = sin(a)-cos(B)+ cos(a) -sin(3) (4.59)
cos(a+B) = cos(a)-cos(B)—sin(a)-sin(f) (4.60)

4.5

4.5.1

198 Chapter 4. Recurrent and Convolutional Sequence Models

between two positions ¢ and j
PE(i,j) = |i—]j (4.65)

In this case, the positional encoding is no longer an attribute of the ¢-th input but some
representation of the distance relative to a reference position j. In fact, most of the methods
for relative positional encoding are variants on a theme in which positions are described by
their pair-wise relationships. This forms the basis of several models of this type as we will see
in Chapter 6.

Examples

Both recurrent and convolutional models have been successfully used in numerous applications.
Here we discuss a few of the interesting examples. While these models are mostly basic, they
form the foundations of many state-of-the-art systems.

Text Classification

To illustrate how sequence models could be used, we first consider the text classification
problem in which we assign one of some pre-defined classes to a text. It can be extended to
cover a broad range of problems in NLP, including classifying news texts, flagging sentiment
sentences, identifying spam emails, detecting fake comments, and so on.

In text classification we are interested in selecting the best class from a set C, given a word
SeqUence Wi ... Wy,

¢ = argmax Score(c,wy...wp,) (4.66)
ceC

Here Score(c,w;...w,,) measures how well a class ¢ is predicted for the input sequence
wi...wy,. Here we map the sequence of words to the sequence of word vectors (or word
embeddings), that is, w...w, — X1...X;,. Assuming Score(+) is a probabilistic function that
describes the distribution of the classes, we can reformulate the problem as

¢ = argmax Pr(clw;...wy,)
ceC
= argmax Pr(c|xj...xp) (4.67)
ceC

The central issue here is the modeling of Pr(c|x;...x;,). We define Pr(c|x;...x,,) by
following the general encoder + predictor framework, as follows

* The input X1 ...X,, is represented as a feature vector H € R% by using an encoder

H = Encoder(x;...X;,) (4.68)

4.5 Examples 199

Pr(c|xi...Xm)

)

Predictor Softmax(H-U. + b.)

Feature vector H | | | | | | ||

Pooling Pooling Pooling

Fiter 1 | | | [[| Fiuer2 | | | | [| Fier3 | | | []

Y

X1

X2

X3

Word vectors
X4

X5

X6

Figure 4.10: A CNN-based text classifier [Kim, 2014]. The input is a sequence of word
vectors. A convolutional layer involving multiple filters is used to extract features in different
dimensions. A pooling layer is used to reduce the number of features for representing the input
text, leading to a low-dimensional feature vector H. The prediction conditions on H and is
made by using a standard Softmax layer.

* H is fed to a standard Softmax layer to predict the class distribution
Pr(-[H) = Softmax(H-U.+b,) (4.69)

where U, € R4 *¥IC1 and b, € R/l are model parameters.

Encoder(+) is exactly the same thing we discussed in the preceding sections. There are,
therefore, many encoding models that are applicable here. For example, consider the CNN-
based encoder presented in Kim [2014]’s work. Kim [2014]’s model is based on a single
convolution layer involving dp, filters. The application of a filter produces a set of features,
each being associated with a position of the sequence. Since we want a single vector for
representing the entire sequence, a pooling layer is added so that the number of features for
each filter is reduced to one. Then, for any c, the probability Pr(c|/H) can be computed trivially
according to Eq. (4.69). See Figure 4.10 for an illustration of this classifier.

To train such a model, we just need to optimize it on some loss, and, as mentioned several

4.5.2

200 Chapter 4. Recurrent and Convolutional Sequence Models

times in this book, one of the most common methods is to minimize the cross-entropy loss
using gradient descent. Also, we can use regularization to improve the training of CNNs. More
details about these techniques can be found in Chapter 2.

Note that while the model described here is quite “simple”, it is among the most effective
models known for text classification. There are, of course, improvements to this kind of
classifier. Examples of such systems include deep CNNs [Conneau et al., 2017c¢], character-
based CNNs [Santos and Gatti, 2014; Zhang et al., 2015], recurrent CNNs [Lai et al., 2015],
and so on.

End-to-End Speech Recognition

Speech recognition is a task of taking a sequence of acoustic signals and mapping it to a
sequence of words or characters (call it a transcription) [Reddy, 1976; Rabiner and Juang,
1993]. Since the original input is an acoustic waveform over the time domain, it is common to
transform it into a sequence of waveform fragments (call them frames). Typically, a frame
is represented as a feature vector, denoted by x;. This is achieved by using either feature
functions in signal processing [Davis and Mermelstein, 1980; Picone, 1993; Campbell, 1997]
or learnable embeddings [Chorowski et al., 2019; Schneider et al., 2019]. Regarding the output,
speech recognition systems generally do not produce words. Instead, they produce sequences
of transcription units (or transcription labels), e.g., phonemes, characters, sub-words, etc.
In this subsection we assume that the output of a speech recognition system is a sequence of
English letters, denoted by y1...y,, € Vy". The alphabet Vy consists of normal English letters
(a — z), numbers (0 — 9), spaces ((sp)), periods ({pe)), and other punctuation marks. As with
most modern speech recognition systems, we add a blank symbol € to the alphabet in order to
indicate the null output.

The goal here is to find a string ¢; ..., for a given input sequence Xj...X,,, so that

U1.-Un = argmaxPr(yj...yn|X1...Xm) (4.70)
Y1--Yn

This model is relatively difficult compared to the classification model described in the
previous subsection, as the output can be an arbitrary string, rather than a class in a predefined
class set. The string generation problem leads to two difficulties. First, we need some
mechanism to model Pr(y;...y,|X1...X,,) for an exponentially large number of pairs of input
and output sequences. Second, in practice y; ...y, is often much shorter than x;...x,, (i.e.,
n < m), and so we need some mechanism to align a long sequence to a short one. However,
we do not need to consider these difficulties in the stage of representing the input sequence,
and can still encode the input sequence x;...X,, in the same way as other sequence models.

Specifically, we represent x;...X,, in the following form

hy...h,, = Encoder(x;...x;,) 4.71)

The encoder can be RNNs, CNNs, or more advanced models (such as Transformer). Here
we consider the encoder architecture used in Graves et al. [2013b] and Graves and Jaitly

4.5 Examples 201

[2014]’s work. It is a multi-layer bi-directional LSTM model. We skip the details of this model
without loss of continuity, as the reader may be already familiar with it in Sections 4.2.3, 4.2.4
and 4.3.2.

Having obtained the sequence representation H = h;...h,,, a softmax layer is used to map
each h; € R% to a distribution of transcription labels, given by

Pr(-/h;) = Softmax(h;-Us+by)

where U, € R% Y| and b, € RIY¥| are model parameters. Pr(:|h;) € Rl is a probability
distribution over VJ,, and the probability of transcription label /; at position 7 is simply Pr(l;|h;).
We can then write the probability of a label sequence in the form

Pr(ly..dmH) = [[Pr(xlh) (4.72)
k=1

This formulation looks simple. We can appeal to the arg max operation to find the most
probable label sequence as usual. However, [;...l,,, cannot be straightforwardly used as a
system output, because it often contains many duplicate and blank symbols. To “post-process”
lq...lm, we first merge the sub-sequence of labels to a single label when they are the same, and
then remove the blank symbols. For example, consider a label sequence

s seeeceece(spye€eoou

LR N3

By merging “s s”, “e ¢”, and “o 0”, we have
s eee€ece (sp)yeou

Then, we remove all € and obtain

s ee (sp)y ou

The above sequence is what we would call a transcription. Obviously, different label se-
quences can correspond to the same transcription. Let B(y; ...y,) be the set of label sequences
corresponding to 31 ...y, '2. We now turn to the following form of the transcription probability
(see Figure 4.11 for an illustration)

Pr(yi..yn|X1..Xm) = Z Pr(ly...0n|H) 4.73)
ll---lmEB(yl---yn)

A problem with this model is that the number of the sequences in B(y;...y,) grows
exponentially with n (and m). Fortunately, there are very efficient methods for comput-
ing le...lmEB(yl...yn) Pr(ly...l;»|H). See [Graves et al., 2006] for a dynamic programming

2p (y1...yn) may contain label sequences of arbitrary lengths. However, if we restrict input to the sequence
X1...Xm, then each sequence in B(y;...yn) is of length m.

202 Chapter 4. Recurrent and Convolutional Sequence Models

Gold-standard [s | e | e [Gpl ¥y | 0 [u]
Transcription S e (sp) Y 0 u
Label Sequence s|[si[elle]llelle]l[e]l[e] sp) ¥ [E] 0 [0 [u
2 S A Y Y Y MY R N
Softmax

S S S S S S S S S S
Hidden States h; hy h3 hy hs hg hy hg hg hig hj; hip hiz hyy
I N S T T T N N S S

Bi-directional LSTM Encoder

L S SN N I N N S

Spectrum
p X1 X2 X3 X4 X5 Xg X7 Xg X9 X10 X11 X12 X13 X14

Features

speect - 0P PG LAY AR P P R O O

Figure 4.11: An end-to-end speech recognition architecture. The input of the system is
a sequence of acoustic signals that are represented as a sequence of feature vectors (i.e..,
X1...X14). These feature vectors are taken by a bi-directional LSTM encoder. The output
of the encoder is a sequence of contextualized representations (i.e., hy...hy4) which is then
fed into a softmax layer for generating a distribution of labels at each position. We can then
draw a sequence of labels from these distributions. We map each label sequence to a form of
final output by eliminating duplicate symbols and blank symbols. An output of the system
corresponds to a number of label sequences, and the probability of the output is the sum of the
probabilities of these label sequences.

algorithm for solving this problem.

Note that Eq. (4.73) is also known as a form of connectionist temporal classification
(CTC) [Graves et al., 2006]. It is one of the most widely used methods for training end-to-end
speech recognition and speech translation systems. One of the merits of CTC is that it allows
us to align any label sequence to a transcription in a very simple and efficient way. It is easy to
make use of CTC in training a speech recognition system. Suppose there is a set of pairs of
input sequence and transcription, denoted by S. A common training objective is to maximize
the likelihood of these transcriptions given the corresponding inputs, written as

0 = argmax > log Pr(y1...yn|x1..-Xpm;0) (4.74)
b (Y1---Yn,X1..Xm) ES

where Pr(y1...yn |X1...Xp; 0) is the probability computed via Eq. (4.73), and € is the parameters

4.5.3

4.5 Examples 203

of the model.

When testing on new data, we search for an optimal transcription as in Eq. (4.70).
This process, also known as decoding, generally involves optimized search algorithms and
pruning techniques. For example, we can use the 1-best label sequence instead of all possible
label sequences to obtain an approximation to Eq. (4.73), that is, Pr(y;...yn|X1...Xm) =
max Pr(l;...l,,|H). This leads to an efficient decoding method, called Viterbi decoding,
which has been extensively used in speech recognition and machine translation [Lopez, 2008].
For more details about the decoding of sequence generation, we refer the reader to Chapter 5.

Sequence Labeling with LSTM and Graphical Models

Sequence labeling is a conceptually straightforward approach to classifying data in sequence.
In NLP, it has penetrated many sub-areas like word segmentation, part-of-speech tagging, and
chunking. Learning in these models consists of simply predicting a label in a label set V;, at
each position of a sequence. Ideally, we wish to perform a sequence of labeling actions based
on the entire input, given by

D1 Um = argmaxPr(yy..ym|x1...Xm) 4.75)
Y1-Ym

where x;...X,, is an input sequence (such as a sequence of word vectors), and ¥ ...y, is a
label sequence in which each label y; corresponds to an input item x;.

As we have seen in this chapter, Eq. (4.75) perfectly fits the form of the sequence modeling
problem. As a first step we use an encoder to map X;...X,, to a sequence of contextualized
representations, as follows

h;..h,, = Encoder(x;...x;,) (4.76)

We define Encoder(+) as a bi-directional LSTM model because it involves a memory
mechanism for modeling long-range dependencies in both left and right contexts. Hence, the
architecture of the encoder is the same as that used in the preceding subsection.

h;...h,, can then be taken to be the input of a usual sequence labeling system (see Figure
4.12). The sequence labeling problem has been discussed in Chapter 1, and many models are
applicable to it. The simplest is the one that involves a classifier (such as maximum entropy
and SVM-based models) for predicting a label distribution for each h;. A problem with these
models is that the predictions are made independently. A more powerful approach is to use
graphical models to consider dependencies among predicted labels. For example, hidden
Markov models (HMMs) describe how a sequence of observations (i.e., X1...X;,) is generated
given a sequence of variables (i.e., y1...yn,). The key idea is to rewrite Pr(yy...ym|X1...Xm)
using the Bayes’ rule and approximate Pr(y;...4m |X1...Xy,) by a product of simple factors.
However, these models require probability density functions of continuous variables (e.g.,
Pr(x;|y;)) which are difficult to estimate. This differentiates the use of HMMs in neural
models greatly from that in conventional models where all states and observations are discrete

204 Chapter 4. Recurrent and Convolutional Sequence Models

Label Sequence 7 v
‘ Y %

CRF Network |:| | | | |_ _|:|_|:|

Hidden States h; hy h; e h,,_1 h,,

T T T T T

Bi-directional LSTM Encoder

T T T T T

Input Sequence X1 X9 X3 E Xm—1 Xm

Figure 4.12: The BiLSTM + graphical model architecture for sequence labeling. The encoder
is a standard bi-directional LSTM model. Given a sequence of input feature vectors (i.e.,
X1...Xm), it produces a new sequence of feature vectors for mapping the input to contextualized
representations (i.e., h;...h,;). A CRF network is placed on h;...h,, to predict a distribution
of label sequences. The optimal label sequence is the one that has the maximum probability.

variables'?.

HMMs and their descendants can be viewed as instances of generative models. Another
type of model that has been commonly used to solve sequence labeling problems is discrimina-
tive models. One such model is conditional random fields (CRFs) [Lafferty et al., 2001]. The
CRF model features its ability to directly model the joint probability of the entire input and

3In HMMs, a sequence of variables can be viewed as a path of transiting over some states whose values are
chosen from a pre-defined set. In each transition from one state to another, something is observed (call it an
observation). By making some assumptions, we can approximate Pr(y1...ym|X1...Xm) in the following fashion

Pr(y1..ym) - Pr(x1...xm|y1...ym)
Pr(x1..xm)

[T Pr(yilyi—1) - TIiZ, Pr(xily:)
Pr(x1..xm)

IT7% 1 Pr(yilyi—1) Pr(xily:)

- Pr(xi...xm) “.77)

Pr(y1~-~ym|X1,..Xm) =

where Pr(y;|y;—1) is the transition probability of moving from y;_1 to y; (when i = 1, we define Pr(y;|y;—1) =
Pr(y1|yo) = Pr(y1)), and Pr(x;|y;) is the emission probability of observing x; given y;. As the denominator
Pr(x1...xm) is a constant number for different y ...ym, it can be dropped in the argmax operation of Eq. (4.75),
as follows

m
U1-Gm = argmaxHPr(yi\yi,l)Pr(xﬂyi) (4.78)
Y1---Ym i=1

To estimate Pr(x;|y;), a possible solution is to take Pr(x;|y;) = Pr(y)

, and use a neural network to
compute Pr(y;|x;).

4.5 Examples 205

label sequences, and to allow us to make use of a variety of features to do this. Consider, for
example, the linear-chain CRF [Sutton and McCallum, 2012]. It defines Pr(y;...ym, |[h1...hyy,)
in the following form

Pr(yy...ym,hy...hy,)

Pr(yi...ym|hi...hy)

Pr(hlhm)
_ exp(Score(yi...Ym, h1...hy,)) 4.79)
Z(hi..hy,,) '
where Z(h;...h,,) is a normalization factor, and has the form
Z(hy..hy) = > exp(Score(y; ..y, hi...hn)) (4.80)

/ /
Y1-Ym

Score(-) is a score for weighting the sequence pair (y...ym,h1...h,,). It is given by
summing over the values of a set of feature functions { fi(+),..., f7(:)}, like this

m J
Score(y1...ym,h1..hy,) = Zij(yi,yi_l,hi) (4.81)
i=1 j=1

The outer loop of the summation corresponds to a visit to each position ¢. Given i, each
function f; (+) takes the current label y;, the previous label y;_; and the current input vector h;,
and then returns the value of a feature.

This model is called /inear-chain because it represents ¥ ...y, as a chain structure where
each node y;, along with an observed variable h;, only connects to its preceding node y;_1 and
its following node ;1 '#, like this

i — o — Y1 — Yi — Yi+1 — 0 — YUm

| | | | |
h; e h; h; h;q e h;,

In CREFs, it is assumed that the variables in the graph is only dependent on its neighboring
variables. Therefore, f;(yi,yi—1,h;) can be defined according to how y; is connected. There
are generally two types of features.

* Transition-like Features. This type of features models the connection between consec-
utive labels (y;—1,¥;), given by

i yi-1,hi) = w(yi-1,vi) (4.82)

where u(y;—1,y;) is an entry of a weight matrix u, indexed by (y;—1,%;)-

* Emission-like Features. The second type of features models the connection between a

4CRFs can broadly be categorized as a type of undirected graphical models. They define a graph over a set
of observed variables and a set of unobserved variables. These variables are connected in some way that forms a
graph.

206 Chapter 4. Recurrent and Convolutional Sequence Models

label y; and the associated input x;, given by

fo(yisvi—1,hi) = gi(ys) (4.83)
where g;(y;) is the entry y; of a vector g; € RIY¥l. The vector g; represents the weights
of associating h; with each label in the form

where v € R% >l is a weight matrix.
To simplify notation, we use y; (or 1;_1) to denote the one-hot representation for a label'>.
Then, substituting the above feature functions into Eq. (4.81) allows the scoring function to be
written in the form

m

Score(y..ym 1 hm) = > w(yio1,yi) + 9i(vs)

= Z(yi_l cu+h;-v)-yf (4.85)

The right-hand side of the equation only involves simple algebraic operations on vectors
and matrices, allowing viewing this model as a normal neural network. In this way, it is
convenient to implement the sequence labeling system with various neural network toolKkits.
We just need to stack a CRF network on an encoder network and learn the entire network
as usual. For example, one can train this system by maximum likelihood, and optimize the
loss function by gradient descent. Note that, as with other chain or lattice-based models, the
CRF network can be efficient because there are dynamic programming algorithms, called
the forward-backward methods, for computing both Score(yj ...y, hy...h,,) and Z(h;...h;,).
We refer the interested reader to related papers for more detailed discussions [Lafferty et al.,
2001; Sutton and McCallum, 2012].

One advantage of marrying the worlds of distributed representation and sequence labeling
is that we do not need to specify any feature templates as in conventional approaches. Instead,
the model is free to learn features that describe whatever input sequences are most effective at
optimizing some objective for sequence labeling. Such an architecture has been used as the
backbone model for several state-of-the-art systems [Huang et al., 2015; Lample et al., 2016;
Ma and Hovy, 2016; Li et al., 2020c].

51n this case, Yi € RV , although it is originally used as a scalar.

4.5.4

4.6

4.6 Summary 207

Hybrid Models for Language Modeling

As we have already noted, many sequence modeling problems can be dealt with by either RNN-
based or CNN-based models. Each of these two types of models has its own characteristics:
RNNSs are originally designed for dealing with variable-length temporal data, and CNNs are
more effective in interpreting local information in restricted regions of input. Here we consider
a hybrid approach to language modeling for obtaining the benefits of both.

Recall from Section 4.2.1 that a neural language model is learned to predict a probability
distribution over a vocabulary, given some representation of the history words. Let wj...wy,
be a word sequence to which we want to assign a probability. First, we represent each word
w; as a word vector x;. Then, an RNN model takes a word vector at a time and outputs the
probability

Pr(wi+1\w1...wi) = PI‘(’LUZ'+1|X1...XZ')
= Pr(wit1|h;) (4.80)

where h; is the state of the recurrent unit at step 4.

The process of converting words from symbols to continuous representations plays an
important role in this model. While it is common for practitioners to obtain x; from a word
embedding table, this approach treats each word as a whole and simply ignores its internal
structure. In consequence, it might be difficult to learn distinct vectors for rare words in
languages with large vocabularies [Bojanowski et al., 2017].

Here we consider a different way of representing words. The idea is simple: an additional
neural network is used to embed words [Ling et al., 2015; Kim et al., 2016]. Suppose every
word w; can be expressed as a sequence of characters. We represent these characters as
real-valued vectors e; 1...€; jen, Via a character embedding table. Following Kim et al. [2016]’s
work, we can use a CNN to represent €; 1...€; jen,; as a word vector in the following form

X; = CNN(em...ei,leni,W)
= Pooling(TanH(Conv(e; i ...€; jen;, W))) (4.87)

where Conv(-, W) is a convolutional layer with parameters W, TanH(-) is a hyperbolic
tangent function, and Pooling(-) is a pooling layer.

Figure 4.13 shows the architecture of the model. We see that there is a hierarchical structure
behind this model, that is, characters form a word, and words form a sentence or phrase. On
a practical side, in many NLP tasks it is quite natural to consider the hierarchical nature of
language. We will see a few examples of making use of the relationships between different
levels of language representations in later chapters.

Summary

This chapter has introduced the recurrent and convolutional neural approaches to modeling
sequences of words. On one hand, recurrent neural networks are designed for dealing with

208 Chapter 4. Recurrent and Convolutional Sequence Models

Pr(-Jwy...w;)

T T T T

RNN| —— |RNN| —— [RNN| —— |RNN
T T T T

Word Vectors X3 X2 X3 X4

Character-aware T | T
Word Representation 7\ T ,\

CNN CNN CNN

SIS

€31 €32 €33 €34 €35

Character
Vectors

Figure 4.13: A language model with character-aware word representations [Kim et al., 2016].
As a language model, the goal of this model is to compute the probability Pr(w;41|w;...w;)
for each i. We represent each word w; as a real-valued vector x;. This vector is the output of a
CNN that takes a sequence of characters corresponding to this word. Then, the sequence of the
word vectors Xj...Xy, is used as the input to an RNN + Softmax model. The model outputs
at each position 7 a distribution of words, where the entry w; 11 describes Pr(w;41|wy...w;).
This hierarchical structure provides a multi-scale approach to language modeling: a sentence
is modeled by considering words, and a word is modeled by considering characters.

sequential data, and have broad applicability in NLP. To improve the modeling power of these
models, the memory mechanism is generally used. In particular, we have introduced LSTM
and GRU which are two popular types of models in dealing with long sequence problems. On
the other hand, while convolutional neural networks are commonly used to process vision data,
they are straightforwardly applicable to sequence modeling. We have seen that all these models
can be used in several language and speech processing tasks, including text classification,
speech recognition, sequence labeling, and language modeling.

The roots of modeling sequences of language units can be traced back to early work in
several different fields. For example, the process of generating a sequence of words can be
described as a Markov chain where the prediction of a word only depends on a limited number
of previous words [Markov, 1913]. This idea motivates the n-gram methods for sequence
modeling [Shannon, 1948a], as well as hidden Markov models which later appeared and
became popular in modeling sequences of pairs of observed and unobserved variables [Baum
and Petrie, 1966; Baum et al., 1970]. These models and their variants lay the foundations of
many successful NLP systems in past decades [Manning and Schiitze, 1999; Jurafsky and

4.6 Summary 209

Martin, 2008].

The idea of using neural networks in sequence modeling has also been investigated for
some time. One example to see how neural networks are developed and applied to sequence
modeling is speech recognition [Lippmann, 1989]. Most of the studies in the early days
of this research area try to either combine neural networks with existing models [Bourlard
and Wellekens, 1990; Bourlard and Morgan, 1993; Trentin and Gori, 2001], or address sub-
problems of speech recognition [Tank and Hopfield, 1987; Waibel et al., 1989; Lang et al.,
1990; Bengio, 1991]. However, scaling neural networks up in size was challenging because
training deep neural networks requires a lot of computation resources and data. The field had
long been dominated by approaches based on hidden Markov models and Gaussian mixture
models (GMMs), with a pipeline of several modules that require careful tuning. On the other
hand, while fully neural approaches were not state-of-the-art during that time, researchers were
aware of their potential in learning representations of acoustic inputs and freeing them from
hand-crafted features [LeCun and Bengio, 1995].

A dramatic shift from conventional pipelined approaches to end-to-end approaches comes
with the revival of neural networks in the 2000s [Hannun et al., 2014; Graves et al., 2013b].
The shift is so influential that a broad set of fields comes together like never before, e.g., in
computer vision and speech processing, the past ten years have, meanwhile, witnessed great
performance gains brought by very deep neural networks and end-to-end learning [Hinton et al.,
2006; Graves et al., 2013b; He et al., 2016a; Krizhevsky et al., 2017]. In NLP, the paradigm
shift starts with the work on word embeddings [Mikolov et al., 2013a; Pennington et al., 2014],
and continues as more powerful sequence representation models are developed [Vaswani et al.,
2017]. A simple approach to sequence modeling, though not discussed in depth in this chapter,
is compositional models [Janssen, 2012]. For example, we can use the bag-of-words model
to sum or average word vectors of a sequence. Despite the simple architectures of these
approaches, they achieve satisfactory results in many tasks, providing strong baselines for
further research on more advanced models [Conneau et al., 2018]. As the next step, applying
recurrent and convolutional neural models to sequence modeling is straightforward. This is
not surprising because these models are fairly well studied in other fields [Lipton et al., 2015;
Li et al., 2021d; Khan et al., 2020]. In particular, the LSTM model is well suited to deal with
long sequences and thus of great interest to NLP researchers [Sundermeyer et al., 2012; Huang
etal., 2015; Wu et al., 2016]. However, we are always on the way. Learning sequence models
is one of the most active research fields with no end in sight. There are many models that are
based on new architectures and show stronger performance in various tasks. More discussions
on some of these models can be found in Chapters 6, 7 and 8.

Note that the term sequence modeling is currently used in many different ways, referring
to different tasks. In many cases it is more common to use the terms encoding and encoder
to emphasize the process of mapping a sequence of symbols to a continuous representation.
As discussed in the previous sections, a benefit of viewing encoding as an individual task is
that we can learn a general representation model that is not dependent on where we apply it.
It opens the door to a wide range of pre-trained encoders for learning to represent various
types of data, such as text [Peters et al., 2018; Devlin et al., 2019], speech [Oord et al., 2018;

210 Chapter 4. Recurrent and Convolutional Sequence Models

Hsu et al., 2021; Chen et al., 2022], vision [Chen and He, 2021; Bao et al., 2021; He et al.,
2022], and combinations of them [Chuang et al., 2020; Li et al., 2021c; Kim et al., 2021]. A
closely related concept to text encoding is text embedding or sentence embedding [Conneau
et al., 2017a; Cer et al., 2018]. These can be broadly considered the same thing. In general,
an embedding model in NLP means a process of transforming the input text into a single
low-dimensional vector rather than producing sequences of contextualized vectors [Kiros et al.,
2015; Hill et al., 2016].

In many NLP problems, systems are not necessarily sequential on their input and/or output.
For example, in text classification, a system may take tree-structured input and produces a
label [Tai et al., 2015; Yang et al., 2016]. In this case we need some mechanism to encode
hierarchical structures. An alternative approach is to convert trees to sequences (or linearized
trees) so that we can directly make use of sequence models to handle non-sequential data
[Vinyals et al., 2015]. This is a great idea because it opens up the possibility of developing a
universally applicable encoder to represent various types of data if the input of the encoder can
be linearized in some way. For example, by representing an image as a sequence of patches,
sequence models can be directly applied to image classification, achieving state-of-the-art
results on several tasks [Chen et al., 2020a; Dosovitskiy et al., 2021].

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 5

Sequence-to-Sequence Models

KNI, TTMLEX .

According to the Principle of Heaven and Earth and all things, nothing
exists in isolation but everything necessarily has its opposite.

- GEAZ)

Reflections on things at hand

ZRE/Xi Zhu (AD 1130-1200)
B tH3#/Zuqgian Lv (AD 1137-1181)
translated by Chang [1967]

In the language world, things often come in pairs. If there is a question, there would be an
answer; if there is a Chinese text, there would be an English translation; if there is a sentence,
there would be a parse of it according to some syntax. Many NLP systems are designed to
model the correspondence between these pairs, i.e., one of the two is taken as input and the
other is taken as output. These problems can be expressed in a form that we have encountered
several times, like this

y = argmaxPr(y|x) 5.1
y
where x is an input variable, y is an output variable, and Pr(y|x) is a model that estimates how
likely y would be the true output given x.
This chapter is more interested in a particular family of problems where both x and
y are sequences of words, called sequence-to-sequence (or seq2seq) problems. Unlike
classification problems where the output ¢ is selected from a fixed set of classes, sequence-to-
sequence problems require producing an output from an exponentially larger set of sequences.
Obtaining ¢ in this case turns out to be a much more complex problem than the case of
classification, because we need more powerful models to describe Pr(y|x) and more efficient
search algorithms to solve Eq. (5.1).

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

5.1

212 Chapter 5. Sequence-to-Sequence Models

This chapter will discuss the well-known encoder-decoder architecture for sequence-
to-sequence modeling. Also, this chapter will discuss the attention mechanism which is an
improvement on this architecture. Both of these models lay the foundation of discussions of
several state-of-the-art models in the following chapters. Furthermore, this chapter will discuss
the search problem which plays an important role in sequence generation and related problems.

Sequence-to-Sequence Problems

We choose machine translation as an illustrative example throughout this chapter, because it
is now one of the most popular sequence-to-sequence tasks. We use x = x;...x,, to denote
a sequence of words in one language (call it a source-side sequence or source sequence),
and use y = y1...Yn to denote a sequence of words in another language (call it a target-side
sequence or target sequence). We can write Eq. (5.1) using the new notation, as follows

y = argmaxPr(y|x)
y
= argmaxPr(yj...yn|T1...2m) 5.2)
Y1---Yn

As discussed in Chapter 1 and in [Brown et al., 1993], this formulation implies three
fundamental issues.

* Modeling. First, we need to define the form of Pr(y|x). In this chapter we show that
Pr(y|x) can be computed using a single neural network based on the encoder-decoder
architecture and the attention mechanism. Note that sometimes we just need a model for
discriminating “good” from “bad” target sequences. In this case, it is not necessary to
require the model to make probability sense, and we can take a discriminant function
instead.

* Training. Then, we need to learn parameters of the model Pr(y|x) given some training
data. As Pr(y|x) is expressed as a neural network, we can train it in a regular way:
we optimize some loss by gradient descent. See Chapter 3 for common approaches to
training neural networks. We will also discuss techniques that are tailored for specific
tasks in this and the following chapters.

* Search (or Decoding). Once we have learned a model, we will obtain y by searching for
the target sequence that maximizes Pr(y|x). This is a computational challenge because
the number of candidate sequences grows with the maximum length of the sequences
and the size of the vocabulary. In Section 5.4, we will discuss efficient and effective
search methods for sequence-to-sequence problems, particularly for machine translation.

Many NLP problems that fit the form of Eq. (5.2) can fall into sequence-to-sequence
problems, and the research on these problems is largely motivated by discussions of the above
issues. Table 5.1 shows common examples of sequence-to-sequence problems taken from
the literature. When the target-side is a text, the problems can broadly be categorized as the
text generation problems, although a general text generation system does not require the

5.2

5.2.1

5.2 The Encoder-Decoder Architecture 213
Task | Source Target
Machine Translation | Text Translation

Question Answering
Dialogue Systems
Summarization

Text Simplification
Text Style Transfer

Grammar Correction
Speech Recognition
Speech Synthesis

Speech Translation

in One Language
Question
Text/Speech for Conversation
Long Text

Text

Text

in One Style
Text with Errors
Speech

Text

Speech

in One Language

in Another Language
Answer

Response
Summaries of the Text
Simpler Text

Same Content

in Another Style
Corrected Text
Transcription

Speech

Translation

in Another Language

Table 5.1: Examples of sequence-to-sequence problems.

source-side to be sequential. In addition to language and speech processing, sequence-to-
sequence problems can be generalized to cases where the input and/or output of a system
are not naturally sequential. For example, image-to-text generation (or image captioning)
and text-to-image generation systems both involve dealing with images that are typically
represented as 2D data. By representing images as sequences in some way (such as sequences
of patches), sequence-to-sequence models are directly applicable to these tasks.

Historically, most systems in these tasks were developed somewhat independently, resulting
in different architectures, features, and training methods for different tasks. However, as shown
in this chapter, when we represent these models as neural networks and train them in an
end-to-end fashion, there appears to be a “universal” paradigm for all these problems. This is a
big change for the AI community because many research fields come together and systems can
be shared across them. We can gain some insight into the common nature of a broad variety
of problems, though there are many task-specific considerations in practice. In the following
sections, we will discuss some of the common threads among sequence-to-sequence models.

The Encoder-Decoder Architecture

In this section we discuss the encoder-decoder architecture and a simple neural machine
translation model based on this architecture.

Encoding and Decoding

From a supervised learning viewpoint, we would ideally like to learn a model from a number
of sequence pairs such that any source-side sequence can be mapped to the corresponding
target-side sequence. However, learning the mapping between sequences of discrete variables

214 Chapter 5. Sequence-to-Sequence Models

is typically a problem of learning from high-dimensional data. It inevitably suffers from the
curse of dimensionality, making the modeling and training difficult.

One approach to learning such a mapping is to divide the problem into “simpler” sub-
problems. We assume that there is a low-dimensional representation shared by x and y,
denoted by H. Then, the mapping x — y can be achieved by mapping x to H and then to
y. Formally, given a source-side sequence x, we map it to the representation H by using an
encoding system (call it an encoder)

H = Encode(x) (5.3)

Then, we map H to the target-side sequence y by using a decoding system (call it a
decoder)’

y = Decode(H) (5.4)

This architecture, also known as the encoder-decoder architecture, is widely used in recent
sequence-to-sequence systems (see Figure 5.1 for an illustration). It is easy to see that the
form of Eq. (5.3) is the same as those of the sequence models mentioned in Chapter 4, and so
there are many encoding models to choose from, such as bi-directional LSTM. The goal of the
decoder is to produce a “best” target-side sequence given the representation of the source-side
sequence. Like classification models, the prediction is made by first producing a distribution
over all possible sequences, and then selecting the one with the maximum probability. As such,
we can re-define Decode(-) as a probability function

Pr(-{H) = Decode(H)
= Decode(Encode(x)) (5.5)

In other words, given a target-side sequence y, the decoder assigns it a probability
Pr(ylx) = Pr(y[H) (5.6)

Then, the optimal sequence ¥ is obtained by performing arg max,, Pr(y|x) as in Eq. (5.2). In
many systems based on the encoder-decoder architecture, both Encode(+) and Decode(-) are
models constructed from neural networks. Thus, we can treat the sequence-to-sequence model

Tt is important to distinguish between the concept of decoding (or decoder) used in conventional sequence-to-
sequence systems and that used in the encoder-decoder architecture. The two are often confused, though they are
different somehow. In many machine translation or speech recognition systems, decoding has the same meaning as
translation or transcription, that is, we recover the optimal y from x. As pointed out in Eq. (5.2), this process
involves a search over all candidate y. Therefore, the conventional use of decoding in these systems is to refer
to a search process (i.e., the argmax operation in Eq. (5.2)) [Koehn, 2010]. By contrast, in the encoder-decoder
architecture decoding means a process of recovering the target-side sequence y from the intermediate representation
H. It is all about modeling rather than searching. It is also worth noting that, while the term decoding (or decoder)
is used in different ways, it can be thought of as a process of mapping an encoded message back to the original
message in a communication system as defined in information theory [Shannon, 1948b]. In this sense, the decoding
processes in these systems do the same thing as the word sounds like: convert something to its original form.

5.2.2

5.2 The Encoder-Decoder Architecture 215

Target-side sequence: y =y ..

Decoder
(y = Decode(H

2 -1 . 5| .7 -2 | Representation: H

Encoder
(H = Encode(x

Source-side sequence: X = Z1...Tm,

—

.

Figure 5.1: The encoder-decoder architecture. In the case of sequence-to-sequence problems,
it transforms a source-side sequence X = ..., to a target-side sequence y = y1...Yn. This
procedure involves two steps: x is first encoded as a representation H, and this representation
is then decoded to y.

as a single neural network and train it as usual, provided the entire model is some combination
of Encode(-) and Decode(-).

To apply the encoder-decoder architecture to a real-world task, we need to make a number
of design choices, such as the forms of H, Encode(-) and Decode(-). As a very simple
example, consider the task of regenerating an input word. We can define Encode(-) as a
feed-forward neural network that takes a word (in one-hot representation) and outputs a word
vector. In this way, H is a distributed representation of the word. Then, we define Decode(-)
as another feed-forward neural network that takes the word vector and generates a distribution
over the vocabulary. For training, we wish to learn a system that assigns the largest probability
to the input word. As discussed in Chapter 2, we can call this an auto-encoder which is a
special instance of the encoder-decoder architecture.

Example: Neural Machine Translation

Next we illustrate the application of the encoder-decoder architecture using a working example
— neural machine translation (NMT). We consider a well-known NMT model which uses
RNN or its variants for building both the encoder and decoder [Cho et al., 2014; Sutskever et al.,
2014]. The encoder of the NMT model is a standard RNN-based encoder. As the RNN-based
sequence model has been discussed in detail in Chapter 4, we just give a brief review of this
model here. Suppose that the source-side vocabulary is V. and each source-side word z; is
represented as a one-hot vector in RIVx/. Then, x; is transformed into a h4-dimensional vector

216 Chapter 5. Sequence-to-Sequence Models

(or word embedding)

xj = Embeds(z;) (5.7)

where Embed;(-) is the word embedding function. More details about word embedding
models can be found in Chapter 3.

The RNN model takes the sequence of the word vectors x{...x;, and produces a sequence
of RNN state vectors hy...h;,. An RNN state vector h; € R is defined to be

hj = RNN(hj_l,XE%) (58)

Here RNN(-) is an RNN unit that summarises the information up to position j by combining
the previous state h;_; and the current input x§ in some way. Then, the last state h;,, can be
treated as a representation of the input sequence z;...x,,, and we can use h,, as the output of
the encoder, written as

h,, = Encode(z;...zy,) 5.9

Figure 5.2 (a-b) shows an illustration of the encoding process. Note that the model
described above just involves a single-layer RNN. In practical systems, this framework can be
easily extended to include multiple layers and more powerful recurrent units (such as LSTM
units).

The decoder of the NMT model is a standard RNN-based language model, that is, we
predict the next word y;4; given all previous words ¥ ...y;. To incorporate the source-side
information into translation, a simple and straightforward method is to treat h,, as the initial
state of the target-side RNN. Let y§ € R% be the word vector of the start symbol (SOS)
(denoted by). The corresponding RNN state is given by

so = RNN(h,,,y5) (5.10)

Here RNN(-) has the same form as the recurrent unit used in the encoder, but with different
parameters.
For i > 0, the state vector s; € R% is given in the form

S; = RNN(Sz',l,yf) (511)

Then, s; is fed into a Softmax layer to produce a distribution over the target-side vocabulary
V5. The output of the Softmax layer is given by

Pr(’ylyuxlx'm) = PI’(‘Sl)
= Softmax(s;Uy +by) (5.12)

where Uy, € R%*IVyl and by € RIV¥! are the parameters of the Softmax layer. Pr(yit1ly1---yi, 1..-Tm)
can be seen as the probability of predicting word y; 1 by conditioning on both the translated

5.2 The Encoder-Decoder Architecture 217
Thl Thl Th2 Thm(H

—>|RNN —>|RNN|—>|RNN[—} -+ —>|RNN|->
(a) The encoding process starts (b) The encoder represents x as H
Pr(y1|yo,x) Pr(yn+1ly0---Yn,x)
T 71 T
Soft. Soft. Soft.

—|RNN|—>|RNN|— -+ —»|RNN|—> —|RNN|—>|RNN|— -+ —»RNN|—
x§ x5 X5, X9 X5 X5,
(c) The decoder takes the representation of x (d) The decoder predicts the target-side words

Figure 5.2: The encoding and decoding steps for an RNN-based NMT system. The encoder is
a standard RNN. The encoding process starts with the first source-side word and ends up with
the last source-side word. The last state of the RNN is taken to be the representation of the
entire source-side sequence (i.e., H = h,,). The decoder is another RNN. At the first step, it
takes H from the encoder. After representing (y§...h$, H) as s; at position i, a softmax layer
is built to predict the next word ;1.

words y; ...y; and the source-side sequence x7...T,,. See Figure 5.2 (c-d) for an illustration of
the word predictions of a decoder.

Armed with this model of word prediction, we turn to a form that is frequently used in
papers on NMT, like this

Pr(y[x) = Pr(yylx)
Pr(yOyl yn‘xl wm)
= Pr(yolz1...wm) Pr(y1.--ynlyo, 21...2m)

n—1

= H E(Yit1 [0 Yir T1-- T (5.13)

5.3

218 Chapter 5. Sequence-to-Sequence Models

Sometimes, this equation is also written in an equivalent form

n
Pr(ylx) = HPY(yz‘\yO---yz‘—l,$1-~-90m) (5.14)
i=1

Here we assume that y always starts with yg (i.e., (SOS)) and so Pr(yo|z;...z;,) = 1. In
many practical systems, it is also common to assume that y ends with a special symbol (EOS).
Therefore, we can modify this equation to involve (SOS) and (EOS) on both the source and
target-sides, as follows

Pr(yoyyn+1|T0XTm+1) = Pr(yoyi--ynYnt1lTor1.. - Tmmi1)
= Pr(yolzo...zm+1) -

Pr(yi...ynYn+1]Y0, 0. - Zm41)

= HPT(yiH|y0---yi,$0---fﬂm+1) (5.15)
i=0

where zg = yo = (SOS), Zm+1 = Yn+1 = (EOS), and Pr(yp|zoz1...tmTm+1) = 1.

Since Pr(y|x) can be expressed as a neural network, training this model is straightforward.
As described in Chapter 4, RNN-based language models are trained by using the cross-entropy
loss and gradient descent. NMT can use this same method for training model parameters. Once
we have obtained the optimized model, we can then use it to translate new sentences. Finding
the best translation for any given source-side sentence is a standard search problem. We will
discuss it in Section 5.4.

The Attention Mechanism

The NMT model discussed in the previous section was based on a fixed-length representation of
the source-side sequence. While this model is easy to implement, in many practical applications
it is unsatisfactory because a fixed-length vector might not be sufficient for representing a
variable-length sequence, especially when the sequence is long. This system will therefore
need some mechanism to couple the encoder and the decoder in a fine-grained manner. In this
section we discuss the attention mechanism by which a system can learn, for each word of the
target-side sequence, an adaptive representation that focuses more on important parts of the
source-side sequence.

In fact, the discussion here is related to the attention models in psychology because
translation is itself a cognitive process [Sternberg, 1996; Neisser, 2014]. The key idea behind
this type of model is natural: attention is generally concentrated on specific parts of the
data when we process something. This forms the basis of many state-of-the-art sequence-
to-sequence models, and the attention mechanism has been the de facto standard for the
development of these systems.

5.3.1

(a) An NMT system without attention

(b) An NMT system with attention

5.3 The Attention Mechanism 219
Pr(y1|-) Pr(yz2]|—) Pr(yn41l-) Pr(y1|—) Pr(yz2|-) Pr(yn4+1]—)
T 71 T T 71 T

Decoder , A & -8
T T T SR B
Yo ¥i Yn Yo Vi Y
Attention
X = T
h1 h2 hm 1'1.1 H? hm
T 71 T T 71 T
Encoder Encoder
O T O T
X7 X3 X, X] X3 X

Figure 5.3: NMT architectures without (left) and with (right) the attention model. When the
attention model is not involved, a fixed-length representation is considered for generating
the entire target-side sequence. By contrast, when the attention model is involved, a new
representation is computed specifically for each target-side state so that the decoder can learn
to concentrate on different parts of the source-side sequence for predicting a target-side word.

A Basic Model

Recall that in the NMT model of the previous section, the encoder represents a source-side
word sequence as hj...h,,, and the decoder represents a target-side word sequence as sj...Sy,.
The attention mechanism addresses the question of how a representation can be learned from
h;...h,, so that this representation can explain the source-side sequence well for a given target
state s;. From an information processing perspective, so long as we ignore the meanings of
h;...h,, and s; in NMT, attention can be thought of as a generic process of processing the
input information h;...h,,, by considering how each h; is related to the interest s;. Figure 5.3
compares NMT architectures with and without the attention mechanism.

More formally, an attention model produces a linear combination of {hj,...,h,,} in the
form

m
ci = Y aij-h; (5.16)
j=1

where «; ; is the attention weight that describes how much the model should rely on h; when

ZFollowing the convention in machine translation [Brown et al., 1993], we use j to represent a position in the
source-side sequence, and use ¢ to represent a position in the target-side sequence.

220 Chapter 5. Sequence-to-Sequence Models

computing c; for s;. Sometimes c; is also called a context vector.

A common approach to computing attention weights is to normalize alignment scores in
the following form

a;; = Softmax(a(s;, h;))
exp(a(Sz’a hj))
Z;rf:l exp(a(Szvhj’))

(5.17)

Here the alignment score a(s;, h;) measures how strong h; is related to s;. In general, a(s;, h;)
can be defined in several different ways [Graves et al., 2014; Bahdanau et al., 2014; Luong
et al., 2015]. A comprehensive list of these functions can be found in survey papers on this
subject [Chaudhari et al., 2021]. Here we introduce some of the common ones.

* Dot-product Attention. One of the simplest methods is to measure the similarity
between h; and s;. Thus, we can calculate the dot-product of the two vectors, as follows

CL(SZ', h]) = SZhJT

dp
= > si(k)-hy(k) (5.18)
k=1

A variant of this model, called scaled dot-product attention, adds a scalar factor % to
the right-hand side of Eq. (5.18), as follows

hT
a(si,hj) = SBJ (5.19)

We will see an example of this model later in this section.

* Cosine Attention. Another commonly used similarity measure in vector algebra is the
cosine of the angle between two vectors, given by

a(si,h;) = cos(s;, hy)
sih, (5.20)
— [Isill2 - [yl '

where ||alj2 = (a- a)% is the Euclidean norm of the vector a.

* Weighted Dot-product Attention. This attention model involves a linear mapping of
the input vectors before performing the dot-product operation, given by

a(si,h;) = s;W,h] (5.21)

where W, € R% > is the parameter matrix of the linear mapping. Both this approach
and the dot-product attention approach are also called multiplicative attention [Ruder,
2017].

5.3 The Attention Mechanism 221

¢ Additive Attention. In additive attention, the entries of the two vectors are summed in
some way. A widely-used form is given by Bahdanau et al. [2014]

a(si,h;) = viTanH(s;Ws+h;Wy,) (5.22)

where Wy, W, € R% > and v, € R% are parameters. TanH(s; W+ h;Wy,) pro-
duces a d,-dimensional vector where each entry is a transformed weighted sum of the
entries of h; and s;. It is followed by a dot-product with another weight vector v,.

Now let us return to Egs. (5.16-5.17) and rethink the role of attention weights. Eq. (5.17)
informally defines a “distribution” over h;...h,,, written as

Pr(hj\si) = Oy (5.23)

If we consider h a random variable that takes a value from {hj,...,h,,}, then v j can be
thought of as the probability of h = h;, conditioned on s;, and Eq. (5.16) can be rewritten as

c;, = ZPr(hj|Si)'hj
j=1
= Eppr(nfs;)(h) (5.24)

In other words, c; can be viewed as an expected representation of the source-side sequence
given the target-side state s;, that is, the expectation of {hj,...,h,,} under the distribution
Pr(h;|s;). This provides a general framework for describing the way the decoder receives the
information from the encoder: the decoder is a receiver that determines how much information
is accepted from each sender. For example, in the NMT model of the previous section, there
is only one sender h,,, and so the receiver receives all the information the sender sends.
By contrast, in the NMT model armed with the attention mechanism, there are m senders
{hi,...,h,,} and the receiver receives information according to a distribution of preferences
for the senders.

It is straightforward to introduce the attention model into the process of word prediction.
We modify our treatment of s; so as to make use of both the source-side and target-side
information at each decoding step. We slightly modify the definition of s; to include the
context vector corresponding to the previous state s;_1, as follows

s; = RNN(s;_1,¢;-1,¥5) (5.25)

Compared with the model of Eq. (5.11), the model of Eq. (5.25) takes c¢;_; as an additional
input. Therefore, this model considers both the representation of the target-side words ¥ ...y;—1
(as encoded in s;_1 and y?) and the representation of the entire source-side sequence z1...Tp,
(as encoded in c;_1). Then, the distribution of target words at position ¢ can be conditioned on
s; as usual

Pr(-ly1..vi,x1..km) = Pr(:]s;) (5.26)

222 Chapter 5. Sequence-to-Sequence Models

compute
Pr(yit1|y1-.-Yi, T1...Tm)
(i.e.. Pr(yit1lsi))

Decoder State Decoder State
at step ¢ atstepi+1
Si—1 R
Si—1 S;
T T

i1 =207 aim1j hy

weight a; 1 ; of I
connecting s;_1 and h;;
° :
Qg —1,1 x;—1,2 ;1,3 Qi —1,m |+ :
A :
...... h; h, h; h,,
| Encoder |

Figure 5.4: An attention model for NMT. Suppose we have obtained the representations
{hi,...,h,,} and the decoder state s;_1 up to this point. We wish to obtain the decoder state at
the next step. To this end, we first compute attention weights by normalizing some attention
scores between s; 1 and {hy,...,h,,}, and then compute a context vector c;_; by summing
over {hy,...,h,,} with the attention weights. A new decoder state s; is created by taking the
context vector c;_1, the previous state s;_1, and the word representation y;. s; will be used as
a condition for predicting a distribution of words at step ¢ + 1.

where Pr(+|s;) is generally a Softmax layer. This process is illustrated in Figure 5.4.
We now have a model for computing Pr(y;1+1|y1...¥i,1...¢,). A brief outline of the key
steps of this model is given by

1. Encode the source-side sequence as h;...h,, where h; = RNN(hj_l,xi).

2. Repeat the following procedure from i =1ton —1.

5.3 The Attention Mechanism 223

P

Compute the alignment score a(s;—1,h;) for each j.

s

Compute the attention weights {a;—1,1,...,0-1,m }
exp(a(si—1,h;))
Z;.’,L:lexp(a(si,hhj/)) :

c. Compute the context vector c;_1 = Z;”Zl ai—1,j-hj.

where a; 1 j =

d. Compute the target-side state s; = RNN(s;_1,¢;—1,¥5).

o

Compute the distribution of target-side words Pr(+|s;).

=

Compute Pr(y;+1|y1..-¥i, Z1...2m) = Pr(yit+1]s;) for a given word y; 41 (as in
training), or select the most likely word §;1 = argmax,, Pr(yit1|y1...yi, T1...2m)
(as in testing).

In real-world systems, this basic model can be modified to better predict the target-side
words. For example, we can introduce fusion layers to combine s;, ¢;—1, and y; before the
Softmax layer so that we have a deeper model for prediction [Bahdanau et al., 2014]. Another
commonly used approach is to stack multiple RNN layers on the target-side. In this case, one
can perform attention in either each layer of the stack [Wu et al., 2016] or the top-most layer
of the stack [Luong et al., 2015]. See Section 5.3.5 for more information about multi-layer
approaches to attention.

5.3.2 The QKV Attention

Because the attention mechanism is such a powerful approach, many variants have been
developed. Perhaps the most widely used approach is to reframe the attention problem as one
of matching a query in a set of key-value pairs. It lays the foundation for the well-known
sequence model — Transformer [Vaswani et al., 2017].

Here we assume that there are a number of key-value pairs {(ki,v1),..., (Km,v)} and a
query q. The goal of the query-key-value attention (or QKV attention) model is to obtain a
value by considering the correspondence between the query and the keys. This is a standard
searching problem in database systems in which information is returned in its original form
or a new form when it matches the query. In the QKV attention, the result of searching is
not a single value in {vy,...,v,,} but instead a combination of these values. This is the key
difference of this attention model compared with the conventional models of searching.

Formally, the result of the QKV attention is defined to be

c =) v (5.27)
j=1
where
ak;
aj = Softmax(T) (5.28)

is the attention weight. It turns out that the above model has precisely the same general form
as the model described in the previous subsection, and ¢ can be simply viewed as a context

224 Chapter 5. Sequence-to-Sequence Models

vector.

While the basic form of the QKV attention is not something “new”, it can handle a variety
of problems by giving q, k; and v; appropriate meanings. Here we consider a more general
case where there are n queries {qy,...,q,} and n output vectors {ci,...,c,}. To simplify
notation, we use Q to denote a matrix where the ¢-th row vector is q;, like this

q1
Q = : (5.29)
| dn
k; Vi | c
Likewise, wecandefine K= | : |,V =| : |,and C= | : |. Then, the attention model
k., Vi Cn

can be formulated as

T

C = Softmax(QK

A% 5.30
5 (5.30)

Figure 5.5 shows an illustration of this equation. Note that Softmax(QI;T) computes a

matrix of attention weights

T Q11 ... O1m
Softmax(5) = : : (5.31)
Qn1 ... Qnpm
where a row vector [am aLm} represents a distribution over {vy,...,v,, }. We can then

expand Eq. (5.30) for easy understanding of the model

C1

Cn

-Zm I
=115V

m
_ijl Qn,jVj
-()(t171 e Q1m V1

= : : : (5.32)

Qn1l - Qpm] |Vm

In sequence-to-sequence modeling, Q, K and V can be defined in several different
ways. To describe the correspondence between the source-side and target-side sequences, one

5.3 The Attention Mechanism

225

Queries (e.g., {s1,---,Sn})

Keys (e.g., {hi,....,h;,})

Values (e.g., {hy,....,h,, })

q1 q2 qs3 k; ko ks Vi V2 V3

q1 k; Vi

Q= q2 K= ko V= V2
q3 k3 7 V3
v i QK"
a1
q2 X ki ki ki =
qs3

q3 k3

pu— C9

Returned Values C
C1

3
Ci = Zj:l Q4,5 Vj
c3

Figure 5.5: The QKYV attention model for batches of queries (Q), keys (K), and values (V). The

figure shows a direct implementation of the formula C = Softmax(QTKT)V. Softmax(=5

KT
)

computes the attention weights by normalizing a scaled dot-product of Q and K™. This results
in a matrix « in which a row vector describes weights of different values. By multiplying «
with V, we obtain a sequence of new values, each expressing a weighted sum of the original

values.

approach, called encoder-decoder attention, is to simply assume that

(5.33)

5.3.3

226 Chapter 5. Sequence-to-Sequence Models

and
h;

K=V = |: (5.34)
hy,

In this case, C is a sequence of new representations of the source-side sequence given the
representations of the target-side sequence. As with the model described in the previous
subsection, each c¢; € C can be used to predict the word ;.

In addition to applying the model to sequence-to-sequence problems, another type of
approach is to regard it as a sequence model, that is, we use the QKV attention to represent a
sequence in one language. In this case, the QKV attention is also called self-attention which
forms the basis of the well-known Transformer model [Vaswani et al., 2017]. Consider, for
example, the sequence of states hj...h,,. The self-attention model assumes that

h;
Q =K =V = : (5.395)
hy,
Then, the output of the model is a sequence of representations ci...cp,. c; is a representation

which considers the correlations between h; and any other element of the input sequence. We
will see a more detailed discussion on this model in Chapter 6.

Multi-head Attention

Multi-head attention is an interesting extension to the above models. The key idea is to
perform attention in different sub-spaces of representations simultaneously rather than in a
single space of representations. To illustrate, consider a standard attention model that takes
sequences of source-side and target-side states and outputs a sequence of new states, written as

ci...c, = Att(hy..hy,,s1...8,) (5.36)

where h;,s;,c; € R and Att(-) is the attention function. We can map h; into 7 vectors

{hgﬂ yeees hg-T]} via the following linear transformations
1 1

pl = n;w) (5.37)

b = nw) (5.38)

d d
where h‘[yl},,hy] c RTh’ and WE]’ 7W][Z—] c RdhXTh,

Similarly, we can map s; into 7 vectors { SEI], e SE—T] }+. We then define 7 feature sub-spaces
in which the attention function is performed independently. For the k-th feature sub-space, we

5.3 The Attention Mechanism 227

have

[¥]

e = Att(hlM. nl M lH) (5.39)

The output of the model is a sequence of d;,-dimensional vectors, each of which is obtained
by concatenating the vectors that are produced in all these feature sub-spaces, followed by a
linear transformation. This procedure is given by

cp = [c[ll],...,c[lT]]Wc (5.40)

.cw, (5.41)

where W, € R xdn

Following the notation used in the previous subsection, we can express a sequence of
hy s1 c1
vectors as a matrix, say, H=| : | € R™%dn § = S| e R™*dn and C = S| e R7xdn

h,, Sn Cn
Using this notation, we rewrite Eq. (5.36) as

C = Att(H,S) (5.42)

To give a formal definition of multi-head attention, we first introduce the split and merge

functions. The split function divides each row vector of a matrix into a number of sub-vectors,
dp

resulting in a 3D tensor. For example, splitting a m x dj, matrix A with 7 produces a 7 x m x !

tensor>

Aneagss = Split(A,7) (5.43)

The merge function has a reverse form of the split function. Given a 7 X n X d;’” tensor (say
Ajeads), it merges each group of 7 dTh—dimensional sub-arrays in the form

Amerge = Merge(AheadSa 7—) (5.44)
Thus the form of multi-head attention is given by

C = Cmergewc
= Merge(Cheads, 7) W

= Merge(Att(HheadSa Sheads)a T)Wc (5.45)
Hpcoqs = Split(HWh, T) (5.46)
Sheads = Split(SWs,T) 5.47)

3A a x b X c tensor can be treated as an array of a matrices whose shapes are b x c.

228 Chapter 5. Sequence-to-Sequence Models

Cec Rnth
A

Merge & Project
Merge(Cheads, 7)We

AN

7

AN

Cheads 4
h
c Ranx =

Att (Hheads> Sheads)

Hheads
3Ixmx dn
eR 3

Sheads
3IxXnx an
eR 3

T

Project & Split

Split(HW,, 7)

Project & Split
Split(HW, 7)

AN

AN

~~

H € R™*dn

~~

S € R"*dn

Figure 5.6: An attention model with 7 = 3 heads. First, we transform the input matrices
d 1 a L

into multi-head representations, i.e., 3D tensors Hyeaqs € R3XmM> 3 and Sheads € R3X™ =

These tensors are then taken by an attention model. The output of this model is a tensor

d 1 . .
Cheads € R3X7X 5. We then merge the heads of Cy,qs, followed by a linear transformation.
Finally, we obtain n vectors of size dj,, represented by an n X dj, matrix.

where W, W € R% > are the parameters. Split(HW/,,7) implements the projections of
Egs. (5.37-5.38) for all h;. Likewise, we can have the meaning of Split(HW,, 7). Note that
here Att(-) is extended to deal with multi-head inputs. See Figure 5.6 for an illustration of this
model.

Multi-head attention is a very general approach that can be extended to many models. As a
simple example of this extension, consider the QKV attention model discussed in the previous
subsection. Let Attqrv(Q, K, V) be the attention function, and Q € R% K € R% V € R%

5.3.4

5.3 The Attention Mechanism 229

be the inputs. The multi-head QKV attention model is given by

C = Merge(Attqrv(Qneads; Kneads, Vheads)) We (5.48)
Qneads = Split(QW,,7) (5.49)
Kheaas = Split(KWy,7) (5.50)
Vheads = Split(VW,,7) (5.51)

where W, € R&xdk W, € R W, € R&w*d W, € R%*% are the model parameters.

One advantage of multi-head attention is that the feature sub-spaces will each describe a
different perspective of attention (call it an attention head or head for short). Therefore, the
concatenation of the outputs over these heads represents an ensemble of attention models that
deal with different parts of the data. This is similar to learning a group of models independently
and combining them to form a stronger model. This type of machine learning approach has
been proven to be useful in many problems [Opitz and Maclin, 1999; Zhou, 2012b]. Note that
the multi-head attention models discussed here are parameterized by the linear projections
on the input and output spaces. The use of these linear projections is generally helpful as the
models become deeper and can describe more complex problems.

From an architecture design perspective, multi-head attention falls into a broad class of
neural networks — those involving a number of branches of layer stacks for dealing with
the same input (call them multi-branch neural networks). However, unlike conventional
approaches, which require different model architectures for different branches, the multi-head
attention approach is based on a single model for all the heads. As a result, such systems are
very efficient in practice because the attention procedure can run in parallel over these heads.

Hierarchical Attention

In many cases the underlying structure of an NLP problem is hierarchical. For example,
documents may have a multi-level structure: a document is made up of sentences, a sentence is
made up of words, and a word is made up of characters. It is therefore desirable to modify the
attention models to take into account the hierarchical nature of this data [Yang et al., 2016].

To illustrate, we consider a simple problem where the source-side has a 2-level tree
structure. Suppose the source-side sequence is a concatenation of a number of sub-sequences
{ay,...,ur}. Each u, yields a sequence of words

u = Tp(t,1) - Lp(t,|e]) (5.52)

where p(t,4) is the position of the i-th word of u; in the entire source-side sequence x7...2,.
Then, the sequence x;...x,, can be written as a composition of T sub-sequences:

TLeeeTm = Tp(1,1) - Tp(L) Fp(2,1)~Tp2[aal) - Tp(T,1)Lp(T url) (553)

~~ ~~

ug uz ar

230 Chapter 5. Sequence-to-Sequence Models

Similarly, the encoder output h;...h,, can be written as

by = by By e Bpea - Bpeja) o Bpn-Bpaany 559

On the target-side, we assume that there are two sequences of state vectors: one for
placing the standard representations of the target-side sequence (i.e., si...s,) and one for
placing higher-level representations of s;...s,,. Let ¢(i) denote the position in the higher-level
sequence of s;, and S ;) denote the corresponding state vector. For each ¢, we thus have a pair
of state vectors s; and Sy(;). In general, the relationship between s; and S4(;) comes from the
hierarchical structure of the problem. For example, s; is the representation of a word, and Sy,
is the representation of the sentence the word belongs to*.

As before, our goal is to obtain a context vector c; for each target-side position 7. Here
we still take c; to be a weighted sum of {hy,....,h,,}, as in Eq. (5.16). All that remains is
to specify the attention weight for each h;. As a first step we attend s; to each u;. This is a

standard procedure. We just need to run the attention model on h,,; 1y...h) instead of

p(tﬂlﬁt
h;...h,,, given by

h, = Att(hp(t,l)"'hp(t,\ﬁt|)7si)
[Tt

= > Tikahpen (5.55)
k=1

where 7; 1. ; is the attention weight restricted to uy. h;isa representation of u;, and so we have
a new sequence of representations h;...hp.

Then, we run the attention model on h;...h7 to perform a second round of attention.
This is done by attending s ;) to hy...h7. The output is a context vector for the hierarchical
attention model, given by

c, = Att(ﬁl...ﬁT, S¢(i))

T —
= > ik (5.56)
t=1

where ; ; is the weight of attending s ;) to h;. Substituting Eq. (5.55) into Eq. (5.56), we can
write ¢; as

T |ue

c, = ZZ%,tm,k,thp(t,k)

t=1 k=1

_ Z i jh; (5.57)
j=1

While the notation in this subsection is a bit complicated, the form of the resulting model

“If the a-th sentence covers words from position b to ¢, then ¢(b) = ¢p(b+1) = ... = ¢(c) = a.

5.3 The Attention Mechanism 231

2nd attention Att(+)

Ist attention Att(-)

sub-sequence Uy

Figure 5.7: A 2-level hierarchical attention model. The input sequence h;...h,, is made
up of 7" sub-sequences. For each sub-sequence w4i;, an attention model is used to produce
a context vector h; by considering the target-side state (i.e., s;) and the representations of
the sub-sequence (i.e., hy,; 1y...hy, |g,)))- The result of running this procedure on the 7' sub-
sequences is 1" level-1 representations h;...hp. They are then taken by a second attention
model to consider the attention between these representations and a higher-level target-side
state sg(;). This results in the context vector ¢; which describes the attention between the
target-side state s; and the entire source-side sequence h;...h,,.

is simple. We still combine {hy,...,h,,} in a linear manner but with new weights [Maruf
et al., 2019]. Computing «; ; describes a generative process in which we first determine the
weight of each sub-sequence and then determine the weight of each word in a sub-sequence, as
illustrated in Figure 5.7. See below for an alignment among different types of attention weight.

sequence h1 h‘ul‘ h|u1|+1 h|u1|+‘u2‘ hzz“:—11 lug|+1 hm
weight (@) | i1 o Qjuy| | Qjug|+1 o Qijug|+ug| e OLLEL}IIW\H e Qi
sequence hp(l,l) h])(17‘ﬁ1‘) hp(2,1) hp(QV‘ﬁQD hp(T,l) hp(T7|ﬁT|)
weight (7) | vi1 .. Vi1 Vi2 o e Vi2 e Vi, T YT
weight (7) | m11 ... i, g],1 Ti1,2 - Tilag|,2 e Ti,1,T - Tilap|,T

5.3.5

232 Chapter 5. Sequence-to-Sequence Models

Multi-layer Attention

So far we have considered the case of single-layer attention — the output of the attention
models is written as a linear combination of the source-side representations. Now we extend it
in a natural way to multi-layer attention in which the single-layer attention procedure runs a
number of times for forming a “deeper” attention model.

To do this, a multi-layer neural network is created on the target-side. The model architecture
is regular. We stack a number of attention layers, each interacting with the source-side sequence
and feeding its output to the next layer. In an attention layer, we perform attention as usual.
For the [-th layer in the stack, this step takes the source-side sequence (denoted by h;...h,,) as
well as the output of the previous layer (denoted by sll_l...sl,jl), and produces a sequence of
vectors by

ch...cl, = Att(hy..h,,,s/"t sl (5.58)

n

where Att(-) could be any attention function described in this chapter.

Then, we create another neural network f(-) to give more modeling power to the model.
The output of the attention layer is thus defined to be

sh.sl = f(ch..c s sl (5.59)

f(-) can be designed in many ways [Sukhbaatar et al., 2015; Wu et al., 2016; Vaswani et al.,
2017]. A popular choice is to define f(-) as a feed-forward neural network with a residual
connection, given by

f(ch.c,si7t sl = FFN(c)..cl) + st71sbt (5.60)

n

Substituting for the vectors cll...cﬁl, using Eq. (5.58), the output of layer ¢ is written in the

form

si..sl = FFN(Att(h;..h,,s; . sl1) + sttsht (5.61)

n n

As with the models in the previous subsections, it is convenient to use a more compact
notation by expressing a sequence of vectors as a matrix. Thus this model can be given in
another form

S' = FFN(Att(H,S"1))+8! (5.62)

Here FFN(+) is generally a multi-layer neural network with non-linear activation functions.
The identity mapping (i.e., +S'~1) creates a direct path from the input to the output of the
layer, making it easier to train a deep neural network.

Figure 5.8 shows the architecture of this model. The attention model starts with the initial

5.3.6

5.3 The Attention Mechanism 233

Vs
AN

FFN(.)
Cs Layer 2
Att(+)
............. » H Sl
N4A)
- N
FEN(-)
C Layer 1
Att()
H -t » H SO =S

Figure 5.8: A 2-layer attention model. These layers take the same “key-value” pairs (i.e.,
H) but each takes a different “query” (i.e., S!). The attention model is standard: context
vectors C! are generated by taking both H and S!. A feed-forward neural network is built
to transform C', followed by an addition of S!. So this model can be formulated as S! =
FEN(Att(H,S!~1)) +8/~1. 8! is then used in the next layer as the query, that is, layer [+ 1
takes H and S!, and repeats the above process. The output of the last layer can be viewed as a
deeper representation of H for S.

S1
representation of the target-side sequence, that is, S" =S = | : |. If there are L attention

Sn
layers, then the final output will be S”.

Remarks

Above we considered a basic attention model and a series of refinements. The literature on
attention and related topics contains a wide range of methods for modeling how a system
concentrates on different parts of the input, as well as a wide range of applications of such

234 Chapter 5. Sequence-to-Sequence Models

models. This subsection provides discussions on some of the interesting issues.

1. Alignment vs Attention

Attention is related to a long line of research on alignment approaches to modeling the
correspondence between two groups of language units. In NLP, alignment is a very general
concept that is used to refer to several problems. For example, most statistical machine
translation systems are trained on bilingual texts which are annotated with word-to-word
alignment [Koehn et al., 2003; Chiang, 2005]. Word alignment models are thus developed to
generate links between words in two sentences [Vogel et al., 1996; Och and Ney, 2003; Taskar
et al., 2005; Dyer et al., 2013]. While the outputs of these systems are discrete variables, the
underlying models are mostly probabilistic and continuous. Therefore, the correspondence
between word alignment and the attention models discussed here is apparent because they are
both learned to assign a weight to each pair of words.

Note that despite the similarity between alignment and attention problems, their goals are
different. In most cases word alignment models are used as individual systems to produce
alignment results for downstream systems, whereas attention models are typically treated as
components of bigger systems and do not work alone (see Figure 5.9 for a comparison of these
models). This makes them fit different types of sequence-to-sequence systems in practice:
word alignment is one step of a pipelined system, and attention is some intermediate states of a
neural network.

Nevertheless, word alignment and attention are two related problems, and can help each
other in some cases. For example, one way to see how an attention model behaves is to induce
word alignments from it and measure the quality of these word alignments [Tu et al., 2016; Li
etal., 2019; Garg et al., 2019]. Also, systems equipped with the attention mechanism can be
guided by external word alignment resources [Mi et al., 2016b; Liu et al., 2016b].

2. Introducing Priors

As discussed in Section 5.3.1, the attention models implicitly define an attention distribution
over {hy,...,h;,} by which we can compute a weighted sum of these representations. This
distribution is expressed in terms of the alignment weights and is learned as part of a model.
In addition to learning the attention distribution in an end-to-end fashion, we can also define
it based on our knowledge about how we concentrate on different parts of a sequence when
reading it.

One approach is to directly impose some structure on the distribution. A simple example
is that we consider only a span of the sequence for attention and discard the rest. Let [p; —
D, p;+ D] be a 2D + 1 word window centered at position p; of the source-side sequence. We
can connect s; only to h,,_p...h, 1 p and obtain a local context vector in the following form

c;, = Att(hpi—D---hpi—&-DaSi) (5.63)

This approach is also called local attention. The problem of determining p; is similar
to the reordering problem in machine translation. For translation between languages with

5.3 The Attention Mechanism 235

o
: S (™
Q}X\\\e (é(\e (\)C\\O

)
o

o o™ e ¥ N

o e N @K s e

mir]
- N

% .
36 B

(a) A heat map of word alignments

S
: 8 (™
Q}X\\\e (é(\e (\)C\\O

)
S

N o™ e ¥ N

o e N @K s e

mrs [
% .

pii}

i B

(b) A heat map of attention weights

Figure 5.9: Heat maps of a word alignment model and an attention model for a pair of Chinese
and English sentences. The heat maps are represented as shaded grids in which each cell
describes the correspondence of a pair of Chinese and English words. This correspondence
is shown on a color scale ranging from white denoting a weight of 0 to pure blue denoting a
weight of 1.

236 Chapter 5. Sequence-to-Sequence Models

similar word orders, it is common to assume that the translation is monotonic and p; is linear
with respect to 7 [Koehn, 2004], e.g., p; = Lm%J or [m%} An alternative method is to use a
neural network to predict a relative position in the source-side sequence (denoted by r;) [Luong
et al., 2015]. p; can then be defined to be |mr;]| or [mr;].

In another thread of research, a new distribution is derived by combining the original
attention distribution and some prior distribution. The simplest such distribution takes the form
of linear interpolation

Pr(hjls;) = 7u-Pr(hj|s;)+(1—n)-Prior (5.64)

where Prior is the prior, and 7 is the interpolation coefficient. When 7 = 1, it is a standard
attention model. By contrast, when n = 0, the attention is completely dependent on the prior
[You et al., 2020].

The prior can be chosen in many ways. A simple choice is to assume Prior to be a
Gaussian distribution Gaussian(u,o2). This makes the model well explained: the attention
is concentrated on some point of the sequence and decreases its strength as we spread the
attention from this point. To determine the mean and variance of the Gaussian distribution, we
can use the same technique described above, say, we develop two neural networks to compute
them respectively.

The interpolation can also be considered an intermediate step of computing the attention
distribution. For example, consider the QKV attention discussed in Section 5.3.2. The
interpolation can be placed on the query-key dot-product [Yang et al., 2018a; Guo et al., 2019].
To this end, we can modify Eq.(5.28) in the following form

ak;
o = Softmax(Tj + nPrior)

T

S; >
= Softmax(ﬁj + nPrior) (5.65)

kT hT
4 5-7 (or i 5'7) is not constrained in [0, 1], Prior is re-scaled by a hyper-parameter 7).

As

Sometimes, priors arise in the context where the knowledge of attention comes from
external sources. As discussed above, incorporating word alignments into attention models is
one of the simplest ways to do this. The idea can be extended to make use of more structural
information, such as fertility and coverage [Cohn et al., 2016; Feng et al., 2016; Tu et al.,
2016], or more task-specific constraints, such as monotonic alignments between input and
output sequences [Raffel et al., 2017; Chiu and Raffel, 2018]. Also, as with syntactic machine
translation systems, parse trees can be used to bias the process of attention as an auxiliary input.
For example, dependency trees are a widely used source of information in modeling word
correspondence for either sequence-to-sequence [Chen et al., 2018a] or sequence modeling
problems [Zhang et al., 2020c; Nguyen et al., 2020; Xu et al., 2021b].

Since attention models can be computationally expensive in large-scale applications,
researchers have also developed efficient attention models by introducing more inductive

5.3 The Attention Mechanism 237

biases into model design [Tay et al., 2020b]. This line of research can broadly be categorized
into efficient methods for NLP. In Chapter 6 we will present a discussion.

3. Attention in Memory Networks

As well as being of great interest in sequence-to-sequence systems, the attention mechanism
is extensively used in memory-based neural models [Sukhbaatar et al., 2015; Graves et al.,
2014; Kumar et al., 2016]. As discussed in Chapter 4, a memory system maintains a collection
of data items and allows users to retain and retrieve information. Given a query, it computes,
in some way, the match between the query and the key of each data item. This procedure is
also called addressing [Graves et al., 2014]. Such addressing is typically implemented by
first representing the query and the data item as real-valued vectors, and then calculating a
weight by considering some similarity between the two vectors. The result of the retrieval is a
weighted sum of all the data items. This formalism fits perfectly with the model of the QKV
attention discussed in Section 5.3.2.

Provided the attention mechanism and the memory mechanism are correlated, though not
from a psychology perspective, we can view attention as a process of retrieving information in
a memory (i.e., {hy,...,h,,}) for a given query (i.e., s;). Thus we can interpret a sequence-
to-sequence system with the attention mechanism as follows. On the source-side, we store
information in a memory represented as a sequence of vectors h;...h,,. Then, we retrieve
from this memory to recover step by step the source-side information on the target-side.

4. Beyond Sequence-to-Sequence Problems

While we restrict our discussion to the problem of transformation from one sequence to another
sequence in this section, the general approach of attention can be used to deal with other
problems. As mentioned in Section 5.3.2, and will be discussed in Chapter 6, a well-known
variant of this approach is self-attention. In self-attention, the QKV attention model is used
as a sequence model, and we have only one sequence of variables as input. As a result, the
outputs of this attention model can be treated as new representations of the input sequence.
Self-attention provides a general approach to modeling the interactions and dependencies
between input variables, and so can be applied to a variety of problems. For example, we
can concatenate h;...h,, and s;...s,, as a new sequence h;...h;,s;...s,, and run this model on
the sequence. In this way, self-attention is easily extended to a sequence-to-sequence model
[Lample and Conneau, 2019; Raffel et al., 2020]. Such an approach even works when h;...h,,
and s;...s, represent different types of data. For example, we can use h;...h,, to represent
a text and use s;...s,, to represent an image. Then, we have a multi-modal model that fuses
textual and visual representations by performing self-attention on them [Chen et al., 2020c].
Another approach to joint representation learning of sequences is to build multiple attention
models so that each sequence can learn from other sequences. An example of such models
is co-attention, which has been widely used in multi-modal language processing [Lu et al.,
2016]. For example, for the purposes of visual question answering (VQA), we wish to figure
out which parts of the image are related to a word of the question and to figure out which
words of the question are related to a given part of the image. To do this we will build two

5.4

5.4.1

238 Chapter 5. Sequence-to-Sequence Models

attention models: one for image-to-text attention, and one for text-to-image attention. The
outputs of both models can be thought of as joint representations for the image and text, and
thus can be used as features for answer prediction.

The attention models discussed in this section are order-independent for input. This is an
issue for dealing with sequential data, and can be addressed by encoding order information
in the inputs themselves (see Chapters 4 and 6). On the other hand, the simplicity of this
formulation makes these models general: the input data of the models needs not to be sequential.
As a result, the attention models can be directly applied to more complex data, such as graphs
[Velickovi¢ et al., 2018; Lee et al., 2019].

Search

Search is a fundamental issue in artificial intelligence, and plays an important role in many
NLP systems. The search problem is a computational challenge here because the number of
hypotheses in the search space increases exponentially with the length of the sequence and
the size of the vocabulary on the target-side. Exhaustive search in this case is simply slow.
Therefore, real-world systems often involve search algorithms or heuristics to ensure that
optimal or sub-optimal solutions can be found in an acceptable time.

For many practical sequence-to-sequence applications, the search problem, also called the
inference problem sometimes, can be formulated as the following equation

y = argmaxScore(x,y) (5.66)
yeQ

where Score(x,y) is a model that measures the goodness of y given x.

This equation takes a slightly different form from that of Eq. (5.2). First, we use Score(x,y)
instead of Pr(y|x) as the goodness function. While a typical approach to training sequence-to-
sequence models is to maximize Pr(y|x) (or Pr(x,y)), we often need to consider task-specific
problems when performing inference on test data, for example the problem of length bias. It is
therefore common to involve other terms, as well as Pr(y|x), to define the objective function
for search (see Section 5.4.1). A second difference between Eq. (5.66) and Eq. (5.2) arises
from the form of the search space which is constrained to €2. In general, €2 is a pruned search
space and contains a relatively small number of hypotheses. A common way to achieve this
is through the use of pruning techniques and advanced search algorithms (see Section 5.4.2).
In this section we consider solutions to these problems and some of the refinements. These
methods are largely motivated by the development of machine translation, but the discussions
here are general and can be considered in most text generation problems.

The Length Problem

Recall from Section 5.2.2 that the probability of the target-side sequence y given the source-
side sequence x can be written as a product of probabilities of each word y; given both the
generated words yg...y;—1 and x. Here we re-express Eq. (5.14) using simpler notation, as

5.4 Search 239

follows
Pr(ylx) = [[Pr(vily<ix) (5.67)
i=1

where y ; denotes the sequence yg...y;—1. This can be equivalently expressed in terms of log
probabilities

n
logPr(ylx) = ZlogPr(yi|y<i,x) (5.68)
i=1

Such a simple form of modeling has clear advantages as practical models for NLP, but
unfortunately, this leads to a preference for shorter target-side sequences over longer target-side
sequences. So it seems implausible to simply take Score(x,y) = Pr(y|x) or logPr(y|x) in
search because the result is very probably a short sequence, say, a sequence of one or two
words. This problem is a direct consequence of the inductive bias of the above model. From a
supervised learning perspective, another reason for this is that teacher forcing is used to train
the model: only a ground-truth target-side sequence is considered in training, and the model is
forced to output this ground-truth. By contrast, when applying this model to test data, we need
to explore a big set of y of different lengths, and to compare different y in terms of a function
that is different from the one learned on the training data.

This problem can be addressed through a technique called length reward, which gives
bonuses to longer sequences by adding a term to Score(x,y) [He et al., 2016c]. As discussed
in Chapter 3, a commonly used form of length reward is given by

Score(x,y) = logPr(y|x)+A-n (5.69)

Here the length reward term is the length of y (i.e., n = |y

), weighted by the parameter A > 0.
Improvements on this approach involve replacing n with an estimated sequence length by
using a length prediction model. For example, we can bound the reward in the following form
[Huang et al., 2017b; Yang et al., 2018b]

Score(x,y) = logPr(y|x)+ A-max(l,,n) (5.70)

where [, is a predicted length, and is generally defined to be a scaled length of x, that is,
l, = scalary, - m.

If we substitute the log probability log Pr(y|x) given by Eq. (5.68) into Eq. (5.69), we
obtain

Score(x,y) = ZlogPr(yi\yQ,X)—FA%
i=1
= > [logPr(yily<ix)+ (5.71)
i=1

240 Chapter 5. Sequence-to-Sequence Models

Thus, we can interpret the length reward term as a reward to each word y;. Such a method has
been widely used in statistical machine translation (SMT) systems in which the rewards
are treated as features of a log-linear model [Koehn et al., 2003; Chiang, 2007]. To find an
appropriate value of A, we can either use minimum error rate training [Och, 2003], following
the convention in SMT, or use gradient-based methods as in neural network-based systems
[Murray and Chiang, 2018].

A second approach to biasing search towards longer sequences, called length normaliza-
tion, is to divide log Pr(y|x) by a length correction term, written in the following form

Score(x,y) = log Pr(y|x) (5.72)

Ncorrect

A simple example of this model is to define the length correction term as the sequence length
[Jean et al., 2015], like this

Ncorrect = N

= |yl (5.73)

logPr(y|x) _ > i, logPr(yily<ix)
n n

of the probabilities {Pr(y;|y<i,x)}°.
Another example is the one used in the GNMT system [Wu et al., 2016]. It takes the
exponential of the shifted, re-scaled n, as follows

In this case, can be viewed as the log-scale geometric mean

(54n)*

Ncorrect

where the power « is a hyper-parameter and can be determined empirically on a tuning set. To
compare different methods, Table 5.2 shows a list of scoring functions for length reward and
length normalization.

In machine translation, the length problem is also closely related to the coverage problem
which has been discussed extensively in SMT. When translating a source-side sequence, we
wish to know how many times each word is translated. Then, we will say that over-translation
occurs (i.e., a longer translation) if some words are translated too many times, and that under-
translation occurs (i.e., a shorter translation) if some words are not sufficiently translated.
Traditionally, the coverage of a source-side sequence is described in terms of an m-dimensional

3Suppose {a1,...,an} are n variables. Since

exp(%) = <Hai>/ (5.74)

we have

1
no) n n
2 i=1108a — log (H ai) (5.75)

5.4 Search 241

Method | Form of Score(x,y)

No Reward/Normalization | Score(x,y) = log Pr(y|x)
logPr(y|x)+A-n

Length Reward | Score(x,y) =
) =logPr(y|x)+ A-max(l,,n)
)=
)=

(x,

Bounded Length Reward | Score(x,y

Length Normalization (Basic) | Score(x,y M
(x,y

log Pr(y|x)

Length Normalization (GNMT) | Score m

)

Table 5.2: Scoring functions for length reward and length normalization. m = |x|, n = |y]|,
and [, = scalar,, - m. A and « are parameters.

vector |v1 ... vm} , called the coverage vector. v; describes to what extent the source-side
word x; is translated. In SMT systems v, is a binary variable: 0 denotes untranslated, and
1 denotes translated. However, NMT systems have no such symbolic coverage mechanism.
Instead, they have models that compute the attention weights between x; and all the target-side
words. Therefore, one way to define what we mean by the coverage of a word is to consider
how strong x; connects to the target-side words. To do this, we extend v; to be a continuous
variable, given by

zn: Q4 5 (5.77)
i=1

v; can thus be viewed as the “number of times” x; is translated, say, v; = 0 means that x; is
not translated at all, and v; = 1 means that x; is counted only once in translation. Consider the
example in Figure 5.9. For the source-side word #£1%, the corresponding attention weights are
shown below.

2% 023 014 020 022 022 021 010 029 0.5 030
(J=5)

0.09

i
2
17) =)
[0} =) o
=t j:-) =l
§ o % L 3
j
[=) o [} = o -
< = o] on g |
L o § g ¥ % ¢ g g
g - S 2 =g E = a8 g S)

Uy = Zzlil 04@5 =2.75

We will say that #1%is translated 2.75 times. It is possible to make use of {v1, ..., v, } to
define how much the source-side sequence is covered in translation. A simple way to do this
is to develop a coverage score cp(x,y) by combining {v1, ..., v, }. For example, the GNMT
system defines cp(x,y) in the following form

cp(x,y) = 5210g(min(vj, 1)) (5.78)
j=1

5.4.2

242 Chapter 5. Sequence-to-Sequence Models

where (3 is a weight for the coverage model. The underlying idea is that when v; > 1 the word
x; 1s assumed to be adequately translated; when v; < 1 the word x; is assumed to be lack of
translation. Thus cp(x,y) penalizes hypotheses in which some of the source-side words miss
parts of the translations. An improvement to this form is given by Li et al. [2018]

cp(x,y) = B log(max(v;,7)) (5.79)
=1

where + is the hyper-parameter for truncation, giving a tolerance for under-translation. A
similar form was proposed in [Chorowski and Jaitly, 2017]

m

ep(x,y) = 521(vj>7) (5.80)

Jj=1

It just counts the number of times v; is greater than .
cp(x,y) can be easily introduced into search by adding it to Score(x,y). For example, the
GHKM-style scoring function is defined to be
log Pr(y|x)

Score(x,y) = (5+n)a/(5+1)a+cp(x,y) (5.81)

In practice, modifying Score(x,y) is not the only way to address the length problem in
search. An alternative approach is to have architecture changes for modeling the problem
[Tu et al., 2016; Mi et al., 2016a; Sankaran et al., 2016; See et al., 2017; Malaviya et al.,
2018]. Note that, sometimes the length of the target-side sequence has been specified or
predicted in some way. In these cases, we can either develop models not dependent on the
auto-regressive assumption [Gu et al., 2018], or develop length-controllable text generation
systems for interesting applications [Rush et al., 2015; Kikuchi et al., 2016].

Pruning and Beam Search

There are many ways to define a search space. As a general concept in computer science, a
search space is often referred to as the domain of the problem that is searched. For sequence-to-
sequence problems, we can think of a hypothesis as a mapping from a source-side sequence x
to a target-side sequence y, and can think of a search space as a collection of such hypotheses®.

We can implement a search program by organizing hypotheses in an understandable way
so that we can look at the search space for the problem. Recall that in Eqs. (5.67-5.68)
we assign a probability of y given x by using a left-to-right factorization. A typical search
system maintains a set of hypotheses (or partial hypotheses) and builds up these hypotheses
from left to right’. The search procedure begins with an initial hypothesis set Zy containing

®Here we use (x,y) to denote a hypothesis. When there are multiple mappings from x to y, a hypothesis can
be represented as (x,y,d) where d denotes the mapping. For example, if we transform x to y with a synchronous
grammar, there might be multiple derivations of grammar rules to do this.

N hypothesis is called partial when the corresponding target-side sequence does not end with (EOS), i.e., an
incomplete target-side sequence. In this section we use the terms hypothesis and partial hypothesis interchangeably

5.4 Search 243

only one hypothesis zy whose target-side is yo by considering yo = (SOS) is the start symbol
for all target-side sequences. Then, we extend this hypothesis set over a number of search
steps. Suppose we have a sequence of hypothesis sets Zg...Z,

T'max

where 1% 18 the maximum
number of search steps. At step 7, we wish to extend each hypothesis by adding a new word vy,
drawn from the vocabulary Vy. Let z.src be the source-side of z and z.tgt be the target-side
of z. Clearly, we have z.src = x for any z. Given a hypothesis z.,, € Z;_1, we can extend it

to |Vy| hypotheses {zloy. ... 2/ }. given by
v
{zrllext, s zrllef(lt = Extend(zcur, Vy)
= U Extend(zcur, Vg) (5.82)
v EVy

Here Extend(zeur, vx) is a function that extends the input hypothesis z,, with a word vy, € V4.

The target-side of a resulting hypothesis is the concatenation of z.;.tgt and vy, written as®,

next tgt = Zew-tgtoug (5.83)
These new hypotheses {2z} ;... Illefjt} are then added to Z;. Figure 5.10 illustrates a

few steps in this hypothesis extension process. We see that all the hypotheses can easily be
represented as a tree structure. Here Z; corresponds to a set of the nodes at level ¢ of the search
tree, and we simply have

\Zi| = |V|-|Zi-| (5.84)

In other words, the size of Z; grows exponentially with the number of steps, say, | Z;| = |V .
Each hypothesis z is associated with a log probability log Pr(z.tgt|z.src). log Pr(z.tgt|z.src)
simply takes the form of Eq. (5.68), and can be defined in a recursive fashion

logPr(zF . tgt|zF ..sr¢) = logPr(zew-tgt|zew.src) +
log Pr(vg|zeur-tgt, Zeur.STC) (5.85)

As an example, suppose 2 .tgt = yo...yy;1 1. The form of Eq. (5.85) becomes clear from the

next-
following rewriting

logPr(yo...yi+1/x) = logPr(yo...yi|x) +logPr(yi+1|yo---vi,x)

log Pr(zF

PLI tgt|zﬁext_5rc) log Pr(zcur-tgt|zcur.sre) log Pr(vg|zcur-tgt,zcur-src)

=) logPr(yly <k, x) +1ogPr(y1lyo...yi,X)
k=1
i+1

= > logPr(yely<k,x) (5.86)
k=1

because their forms are the same.
8We use @ o b to denote the concatenation of two strings a and b.

244

Chapter 5. Sequence-to-Sequence Models

(SOS)A otail by
s: —1.3x 1012 X
SOS) o~ SOS)A otaxi
(Yo A (YA otaxi A
s: —1.6x 107 / s: —2.7x 1012 |¥
(SOS) oA \ (SOS)A oteam A
s: —3.2x10% s: —5.0x 1010 |¥
20
(SOS) . |(SOS) o An 7 (SOS)A otext 7
3 43 4
s: 0 s: —6.1x10% |¥ s: —1.0x102 ¥
(SOS) o Because A (SOS)A otiger 2
s: —7.7x100 ¥ s: —3.2x1012 ¥
SOS) oIf
(SOS) o 2
s: —3.9x100 ¥
Step 0 Step 1 Step 2
(Zo ={20}) (Z1) (Z2)

Figure 5.10: Illustration of hypothesis extension in first 3 steps. Each (partial) hypothesis is
represented as a box in which we show the corresponding target-side sequence and model
score. Each search step is associated with a hypothesis set Z;. We start with a hypothesis
20 € Zp denoting the start symbol (SOS). In step i, we extend every hypothesis in Z;_; by
trying to append every word from a vocabulary V' (see words in red). This operation will result
in |V|-|Z;_1| hypotheses, forming the hypothesis set Z;. The hypothesis extension procedure
represents a breadth-first search algorithm: we create all the nodes (or search states) at depth
© — 1 before moving to depth ¢. A tree structure is created along with this procedure, and a leaf
node of the tree can trace the search path back to the root node.

Given this probability, we can then compute z.score = Score(z.src, z.tgt), as in Section
5.4.1. This enables us to compare different hypotheses in terms of z.score. If a hypothesis ends
with the symbol (EOS), it is called complete and is not extended anymore. Once a hypothesis

5.4 Search 245

is complete, it is added to a max-heap’. We can dump the hypotheses with maximum model
scores from the heap. In general, the search procedure will stop if we find a certain number
of complete hypotheses. For example, we can stop searching when the heap is full (see more
discussions later in this subsection). The resulting search algorithm is described below.

Algorithm: A Simple Breadth-first Search Algorithm
SimpleSearch(x)
// Search for the best hypothesis given the source-side sequence x
Create a Heap with sizepeap €lements
Zy = {z0} where zp.src = x and zp.tgt = yo
For each step 7 = 1 to nypax
For each hypothesis zcyr € Z;—1
For each word v, € V5,
Znext = Extend(zeur, Vg, X)
If Zpexs-tgt ends with (EOS), then
Add zpext to Heap
Else
Add zpext to Z;
If Heap is full and/or other stopping criteria are met, then

2N e B

—_ =
—_ O

_
S

Break all the loops

13. return Heap.Pop()

Extend(zcur, Vg, STC)

/I Create a new hypothesis by appending a new word vy, to the target-side of zcyr
Create a new hypothesis zpext

Znext-STC = STC

Znext-tgl = Zeur-tgt o vk

Znext-Prob = Zeur.prob+1log Pr(vg | zeur - tgt, zeur-sTc) /] see Eq. (5.85)
Znext-SCOTE = SCOT€(Znext -ST'C, Znext-tgt) // see Section 5.4.1

O = S

Return zpext

If the hypothesis heap has an infinite capacity (sizepeap = 00), this algorithm will perform
an exhaustive search over a space of all hypotheses whose target-side lengths are up to npyax,
resulting in at most 1+ |V | +|Vy |2 4 - 4|V [rmax = % complete hypotheses. This
is an extremely huge search space which is computationally intractable in practice!?. Therefore,
in practical systems it is common to prune the search space in order to make the search tractable.
In later parts of this subsection we will introduce two popular search algorithms, both adopting

pruning for efficient search.

Given a max-heap a, we use a.Pop() to denote a function popping the top-1 item of a, and use a.PopAll() to
denote a function popping all the items of a.
Consider, for example, a vocabulary size of 20,000 (|Vy| = 20,000) and a length limit of 20 (nmax = 20).

nmax+1_
B =1 would be 1.05 x 10°C.
y

246 Chapter 5. Sequence-to-Sequence Models

1. Greedy Search

The greedy strategy is one of the most common concepts that one learns in textbooks on
algorithms. It is based on a heuristic that the globally optimal solution can be approximated by
making locally optimal decisions. Although such an approximation can only obtain a locally
optimal solution, this is sufficient for many practical applications and its low computational
complexity is a clear advantage.

Applying the greedy strategy to the search problem here is straightforward. In each
extension given step ¢, we only consider the best hypothesis up to ¢. To be more precise, for
any Z;, we only keep the hypothesis with the highest model score and discard the rest. The
output of each step of the greedy search is given by

Zhest = arg max Znext-SCOTE (5.87)
Znext GExtend(Zi, 1 ,Vy)

Here the function Extend(Z;_1,Vy) has the same meaning as that in Eq. (5.82), but operates
on a set of hypotheses, that is,

Extend(Z;1,Vy) = | J Extend(z,3) (5.88)

ZEZi_l

Then, Z; is defined to be
Z; = {Zbest} (589)

A greedy search algorithm for sequence-to-sequence problems is described below.

Algorithm: A Greedy Search Algorithm
GreedySearch(x)
/I Search for the “best” hypothesis in a greedy manner

1. Create a hypothesis zpegt

2. Zy={z0} where zp.src = x and zo.tgt = yp
3. Foreach step i =1 to nmax

4 Zbest-SCOTE = —0OQ

5. For each hypothesis zcy, € Z;—1

6 For each word vy, € V;,

7 Znext = Extend(zcyr, Vg, X)

8 If 2pest-SCOTE < Zpext.SCOTeE, then
9. Zbest — “next

10. If zpest-tgt ends with (EOS) and/or other stopping criteria are met, then
11. Break the loop

12. Zi = {Zbest}
13. Return zpegt

In each step of search, we have only one active hypothesis to extend (i.e., | Z;—1| = 1) and

5.4 Search 247

therefore need |V | extensions from which we select the best one for the next step of search.
The total number of times Extend (zcur, vx) is called is |V| - npax. Provided Extend (zeyr, vk)
is a fixed-cost function, the time complexity of the algorithm is linear with respect to |V'| and

Nmax-

2. Beam Search

Beam search is a natural extension of the above 1-best greedy search algorithm. It is based
on the greedy heuristics as well, and is thus a type of greedy algorithm. The idea of beam
search is to keep at each step a number of the most promising hypotheses rather than the 1-best
hypothesis. A beam is a data structure that stores the best hypotheses we have generated so
far. The number of hypotheses in a beam is a predetermined parameter, called beam width or
beam size. Here we can simply view Z; as a beam, written as

Zi = {Zbestr o e } (5.90)

where sizepeam 1S the beam size. 2:1[1)eSt is the best hypothesis in the extension Extend(Z;_1, V)
(see Eq. (5.87)), zgest is the 2nd best hypothesis in Extend(Z;_1, V4), and so on.

The following pseudo-code describes a beam search algorithm for sequence-to-sequence
problems.

Algorithm: A Beam Search Algorithm
BeamSearch(x)
// Search for the “best” hypothesis by considering a number of best candidates
// in each step

Create a Heap with sizepeap €lements

Zy = {z0} where zy.src = x and zy.tgt = yo

For each step ¢ = 1 t0 npax

Create a heap Beam with sizepear, elements

For each word vy, € Vi,

Znext = Extend(zeyr, Vg, X)

If Znext-tgt ends with (EOS), then
. Add zpext to Heap
10. Else
11. UpdateBeam(Beam, zpext)

1
2
3
4
5. For each hypothesis zcyr € Z;—1
6
7
8
9

12. If Heap is full and/or other stopping criteria are met, then
13. Break all the loops

14. Z; = Beam.PopAll()

15. Return Heap.Pop()

UpdateBeam (Beam, zyext)

// Update Beam with a newly-generated hypothesis zpext

248 Chapter 5. Sequence-to-Sequence Models

1. Add zpext to Beam ¢

“Beam is a max-heap with sizepeam elements. So, if znext.score is lower than all the elements in the
heap, the heap will be left unchanged. In other words, Beam only stores top-sizepeam best hypotheses and
ignores the rest.

The function UpdateBeam(Beam, zp,cxt) is a direct implementation of histogram prun-
ing. Note that this general-purpose framework provides a simple way to implement other
pruning methods, and one can modify UpdateBeam(Beam, zpext) as needed. For example,
an alternative method, called threshold pruning, retains the hypotheses whose differences in
model scores with the best hypothesis in Beam are below a threshold 6yeam, say, we discard
Znext in UpdateBeam(Beam, zpeyt) if

Znext-SCOTE < Zpest-SCOTE — Opeam (5.91)

where 21,05t 1S the best hypothesis in Beam. Alternatively, we can consider a relative threshold
method [Freitag and Al-Onaizan, 2017], given by

Znext-SCOTE < Zpest-SCOTE - Opoam (5.92)

Figure 5.11 shows a comparison of exhaustive search, (1-best) greedy search and beam
search. At one extreme, the optimal solution is guaranteed, but an exponentially large number
of search states are visited. At the other extreme, only the minimum number of search states are
visited, but the solution is sub-optimal. By contrast, beam search makes a trade-off between the
two methods. A larger beam size means more search effort and a higher possibility of finding
the optimum, while a smaller beam size means faster search and a higher risk of missing the
optimum. It is also possible to use a variable beam size to make a better trade-off during search
[Buckman et al., 2016; Post and Vilar, 2018; Kulikov et al., 2019].

An important problem related to these search algorithms is the problem of search errors.
In general, search errors can be defined in several different ways. Here we say that a search
error occurs if the search result is not the same as that of exhaustive search. Common sense
tells us that fewer search errors are helpful for finding “better” results. Thus, we often wish to
have a more desirable target-side sequence by enlarging the beam size. However, this is not
the case for some sequence-to-sequence systems. For example, a search with a larger beam
size may lead to a lower translation quality for neural machine translation systems [Koehn and
Knowles, 2017]. This inspires very interesting studies on the deterioration issue of large beam
search [Ott et al., 2018b; Yang et al., 2018b; Stahlberg and Byrne, 2019].

3. Stopping Criteria

Although the time complexities of the above algorithms are bounded by the maximum number
of search steps (i.e., nmax), it is important to have more efficient algorithms to stop searching as
early as possible, especially for latency-sensitive applications. This typically requires heuristics
to design additional criteria for stopping the search procedure at the appropriate point. Some
of these stopping criteria are:

5.4 Search 249

~GE000000000000000000000000000000 @ (X]
72) w
5 5 5
W w w
 S000000000000000 [] 000
7] w [72)
3 = -
3 3 3
w2 S w2
0000, [J 000
2 2 2
3 3 3
- - -
(a) Exhausted Search (b) (1-best) Greedy Search (c) Beam Search

Figure 5.11: A comparison of exhaustive search, (1-best) greedy search and beam search. Balls
represent search states or partial hypotheses. Exhausted search explores all search states in the
search space. By contrast, greedy search keeps only the 1-best path of search states and prunes
away the rest. Beam search is a trade-off between them and keeps the most promising search
states in a beam in each step.

 If a given number of complete hypotheses are created, then we stop searching. For
example, in the beam search algorithm described in this subsection, the search program
terminates when we have sizepe,p complete hypotheses. Another way to implement
this idea is to shrink the beam as the number of complete hypotheses increases. In
Bahdanau et al. [2014]’s system, once a new complete hypothesis is created, the beam
size decreases by 1. Therefore, the search program will terminate if the beam size is
reduced to 0.

* If every hypothesis at step ¢ has a score lower than that of the best complete hypothesis in
Heap by some margin, then we stop searching. Suppose 2pestinall 1S the best hypothesis
we have generated so far (i.e., zhestinan = Heap.Pop()). If every hypothesis zpext at
step ¢ satisfies

Zbestinall-SCOT€ — Znext-SCOTE > Oan (5.93)

then we will finish the search process at this step. Here 6, is a parameter. One
can specify it with an appropriate value through multiple tries. A simple choice is
0.1 = 0, which is employed in some of the popular sequence-to-sequence systems [Ott
et al., 2019]. Under some circumstances, such an early-stop strategy can guarantee the

5.4.3

250 Chapter 5. Sequence-to-Sequence Models

optimality of search [Huang et al., 2017b; Yang et al., 2018b].

* If every hypothesis at step ¢ has a score lower than that of the last complete hypothesis in
Heap by some margin, then we stop searching. This is a weak condition for early-stop.

* If the top ranked hypotheses at step ¢ are all complete hypotheses, then we stop searching.
This is a more aggressive version of early-stop. For example, in Klein et al. [2017]’s
system, the search program terminates at step ¢ if the top-1 hypothesis is a complete
hypothesis.

* If the search program consumes a certain amount of computing resources, such as a
certain number of floating-point instructions and a certain amount of wall clock time,
then we stop searching. In applications where computer performance is limited and
latency plays an important role, we will often be interested in this kind of stopping
criterion.

Sometimes, the search algorithm will not find any complete hypothesis until hitting the
length limit ny.x. As a practical matter it might be easy in this case to force the best partial
hypothesis to be complete by adding (EOS) to its end.

Note that choosing appropriate stopping criteria reflects a trade-off between fast computa-
tion and accurate prediction at inference time (call it the speed-accuracy trade-off). While it
is not always the case that more time a search program takes could result in better results for a
sequence-to-sequence system, we would always want to know how close we can get to a better
solution to the problem by searching through a larger region of the search space. A discussion
of accurate search algorithms can be found in Section 5.4.4.

Online Search

So far in our general discussion of sequence-to-sequence problems, we have assumed that
all the source-side words come together as a whole and can be accessed in the entire search
process. However, in some practical applications, the inputs are received in order, and we wish
to make predictions conditioned on some of the observed inputs. An example of this is online
automatic speech recognition in which the system continually takes new acoustic signals and
at the same time outputs the corresponding transcription units.

Intuitively, we might think of the generation of the i-th target-side word as a problem of
mapping a prefix of the source-side sequence to the target-side vocabulary. We can formulate
this by introducing a function g(i) which denotes the maximum length of the prefix of x we
use in generating y;. Thus, the probability of y; given the entire sequence x and the previously
generated words y; can be approximated by

Pr(yily<i,x) =~ Pr(yily<ix<g3)) (5.94)

where x ;) denotes the sub-sequence x1...zy(;). Then, the log probability of the target-side

5.4 Search 251

sequence y given the source-side sequence x is written as

n
logPr(y[x) = > logPr(yily<i,x)
i=1

~ Y logPr(yily<ix<y() (5.95)
=1

This equation frames a sequence-to-sequence problem as a prefix-to-prefix problem, that is,
the prefix y<; is only dependent on the prefix x<,;). Inference for this model is simple. For
each i, the search system waits until all g(7) source-side words are received, and then extends
the hypotheses as usual. This can be done by reusing the algorithms described in the previous
subsection. For example, we can modify the beam search algorithm and obtain the following
online search algorithm.

Algorithm: An Online Beam Search Algorithm

OnlineBeamSearch(x, g(+))

// Online search in which the search is operated once an adequate number of input

/I words are received. In each search step, a number of the most promising candidates
/I are considered.

1. Create a Heap with sizeye,, elements

2. Zy={zo} where zg.tgt = yp

3. 7=0

4. i=1

5. input=¢

6. While 1 < npax do

7. If j < g(i), then //read a word from the input stream

8. nput = input o T;

9. Else // make a prediction at step ¢

10. // when g(i) input words are observed (stored in input)
11. Create a heap Beam with sizepear, elements

12. For each hypothesis zcy, € Z;—1

13. For each word vy, € Vi,

14. Znext = Extend(zeyr, Uk, input)

15. If input equals x and zyext.tgt ends with (EOS), then
16. Add zext to Heap

17. Else

18. UpdateBeam(Beam, zpext)

19. If Heap is full and/or other stopping criteria are met, then
20. Break all the loops

21. OutputPartial(Beam)

22. Z; = Beam.PopAll()

252 Chapter 5. Sequence-to-Sequence Models

23. i++

24. Return Heap.Pop()
OutputPartial(Beam)

// Output a partial result

1. Display the best hypothesis in Beam

An advantage of this system is that the output at step ¢ is immediate once we have seen
X<g(i)- This results in an online sequence-to-sequence system in which input words arrive
in a continuous stream and predictions can be made just after a “sufficient” number of input
words are seen.

While the search problem here seems simple, much remains to be done to define g(7).
Clearly, g(4) is a monotonically non-decreasing function. As a simple example, we can define
g(i1) = m for any 7. This will make the above algorithm precisely the same as the standard beam
search algorithm that works with a complete input sequence. By contrast, in online sequence-
to-sequence tasks, we want ¢(7) to be as small as possible, and so we can start computation as
early as possible in inference. The simplest case of these is that the input and output sequences
are synchronous in some way. For example, an automatic speech recognition system assigns
each spectral frame a transcription unit. In this case, we have a simple correspondence between
inputs and outputs: m = n (i.e., |x| = |y|), and z; corresponds to y;. Then, we can simply
define g(7) = i, in other words, each time a new input arrives, we make a prediction.

A more complicated case is online sequence-to-sequence problems with reordering, such
as simultaneous translation, in which a target-side word may depend on source-side words
with long-range dependencies. A simple way to address this is to delay the predictions for
a number of steps. For example, the wait-k£ method forces each prediction to lag behind the
inputs by k& words [Ma et al., 2019]. More formally, the wait-k version of the function g(7) is
defined to be

g(i) = min(m,k+i—1) (5.96)

Here k is a hyper-parameter that controls how large a source-side context is considered in
predicting target-side words. When k = o0, it is the same as the standard search methods for
sequence-to-sequence inference. In simultaneous translation and related tasks, results are in
general satisfactory by using a small value of k. A comparison of different g(4) is shown in
Figure 5.12.

In some applications of online sequence-to-sequence problems, we may know when to
perform search and when to read inputs. For example, in interactive machine translation
[Casacuberta et al., 2009], the translation of a partial input sequence is triggered by some
behaviors of users (such as the action of pressing buttons). In this case, we do not need to
define g(7), but view it as an input variable of the model.

Note that while one can directly employ pre-trained sequence-level models for online
inference, developing such systems often requires additional training effort. A more principled
approach to online sequence-to-sequence modeling is to model the transformation from x to
y as a sequence of actions [Grissom II et al., 2014; Cho and Esipova, 2016; Gu et al., 2017;

5.4 Search 253

j=6 >

j=5 Standard Seq2Seq — ¢g(i) =m

j=4

i=3 | 1-to-1 MonotoTllc g(z) —i (m=n)
Transduction

i=2 fF—=

j=1 Wait-k — ¢(i) = min(m,k+i—1)

7=0

(a) Visualization of g(i).

Standard Seq2Seq

@*@*@**@*@\
DO OO OLUORD),
1-to-1 Monotonic Transduction

O @O EE)
DIDIDID DD

Wait-k (k = 3)

@@ O EE
DIDIDID D ®E

(b) Action sequences.

Figure 5.12: Visualization (top) and action sequences (bottom) of different g(¢) for a pair of
sequences (X = Z1...Z6,¥ = Y1...Y6). In an action sequence, a circled z; stands for the action
of reading a source-side word (), and a circled y; stands for the action of predicting the
probability of y; given X< ;) and y«;. Arrows here stand for dependencies between words.
Because yo denotes the start symbol (SOS), it could be generated without dependencies on
any words.

Zheng et al., 2019]. For example, an action can be either a predict operation that performs
search at the current step, or a read operation that accepts a new input word. Then, we can
frame the task of designing the function ¢(7) as learning a policy to determine which action is

54.4

254 Chapter 5. Sequence-to-Sequence Models

taken given a source-side prefix X<; and a target-side prefix y ;. And sequence-to-sequence
models can be trained on the states of these action sequences so that they can make better
predictions conditioned on part of the input. However, a discussion of training online sequence-
to-sequence models lies outside the scope of this section. We refer the reader to the above
papers for more details on these methods.

Exact Search

From a formal point of view, we would ideally like to develop a system with no search errors.
Although approximate search algorithms have been used successfully in many applications, it is
important to study model errors of these systems, and thus to focus on the problem in principle,
not just in practice. So developing exact search algorithms for sequence-to-sequence models
has long been an interesting topic in NLP research. However, the search problem for a simple
word-based machine translation system with n-gram language models has been found to be
an NP-hard problem [Knight, 1999]. Much of earlier research formulated the search problem
as classical combinatorial optimization problems, such as the linear programming problem
and the traveling salesman problem, and employed the corresponding solvers [Germann et al.,
2004; Zaslavskiy et al., 2009]. Additional research efforts explored exact search algorithms for
statistical machine translation systems by using the Lagrangian relaxation technique [Chang
and Collins, 2011; Rush and Collins, 2012] and finite-state automata [de Gispert et al., 2010;
Allauzen et al., 2014].

Unlike these methods, which are more or less dependent on the integration of n-gram
language models into sequence-to-sequence models, the models described in this chapter take
a simpler form. We begin with a basic model in which the scoring function score(x,y) is the
log probability log Pr(y|x). Eq. (5.68) tells us that log Pr(y|x) can be written as a sum of
word-level log probabilities, and log Pr(y|x) becomes smaller as more target-side words are
generated (i.e., a larger n)!!. In other words, log Pr(y|x) is a monotonic decreasing function
with respect to the target-side length n: for any ¢, we have

logPr(y<i|x) = logPr(y<i|x)+logPr(yily<i,x)
< logPr(y<i|x) (5.97)

This is also called the monotonicity of the scoring function.

Then, by making use of the monotonic nature of model scores, we can develop a heuristic
to rule out hypotheses that would never be the best. Let z},e5tinanl be the global best complete
hypothesis we have found. If a new hypothesis has a model score lower than 2},egtinall-score,
then we will not need to extend it. Thus we can explore a region that is significantly smaller
than the original search space, without loss of optimality. Note that z},egstinal-Score continues
to become larger in search. It will be more difficult to find a better hypothesis and more
hypotheses will be pruned away as the search process proceeds. See the pseudo-code below
for an exact search algorithm of the sequence-to-sequence model of Eq. (5.68).

" Consider logPr(y|x) = S 1 logPr(yily<i,x). Since logPr(y;|y<i,x) has a non-positive value,
log Pr(y|x) will be smaller or unchanged if n grows.

5.4 Search 255

Algorithm: An Exact Search Algorithm
ExactSearch(x)
// Search for the “best” hypothesis by making use of the monotonicity of the
/I scoring function (score(x,y) = log Pr(y|x)).
Create a priority queue (max-heap) Queue
Create a hypothesis zpest With 2pes¢.ScOTe = —00
While Queue is not empty do
Zeur = Queue.Pop()
If | zeur-tgt| > Nmax, then
skip zcyr and continue the loop
For each word vy, € V;,
Znext = Extend(zeyr, Uk, X)

O N N o

bound = st .SCOTE // a lower bound on model scores
If bound < zpext-Score, then// admissible pruning
If Zpexs-tgt ends with (EOS), then
12. Rbest = “next
13. bound = zyext.Score
14. Else
15. Add zpext to Queue
16. Return zpegst

—_
—_ O

This is a general algorithm for exact search, and its search efficiency is greatly influenced
by the design of the priority queue [Meister et al., 2020]. For example, we can view score(x,y)
as the priority of each hypothesis in the priority queue, as in a max-heap'?. Then, the resulting
algorithm performs a procedure of breadth-first-like search, since a hypothesis with a shorter
target-side sequence is more likely to have a higher model score and to be a top-ranked item
in the priority queue. For efficient search, however, we wish to find complete hypotheses as
early as possible, such that more unpromising hypotheses can be thrown away in the early
stage of search. To do this, we can bias the priority of a hypothesis towards a longer target-side
sequence. This provides a depth-first search algorithm which is more likely to find complete
hypotheses in a shorter time [Stahlberg and Byrne, 2019].

While the exact search algorithm becomes apparent by considering the monotonicity of
Pr(y|x), in practical systems, as discussed in Section 5.4.1, score(x,y) often has a more
complex form involving length reward or normalization, and so the monotonic property does
not hold. Fortunately, the assumption of monotonicity can be dropped at the expense of slightly
relaxing the lower bound on model scores for pruning. Here we define bound to be the lowest
model score that a hypothesis should have so that it can at best be extended to an equally
good hypothesis with zpest. For example, consider a simple word reward model described
in Eq. (5.69): Score(x,y) = logPr(y|x) + A-n. For a hypothesis zpext, there are at most

2We can implement a priority queue using a max-heap.

5.4.5

256 Chapter 5. Sequence-to-Sequence Models

Nmax — | Znext-tgt| words we can predict to obtain a complete hypothesis. Suppose all these
Nmax — | Znext-tgt| words are predicted with a probability of 1. Then, the model score of the
resulting hypothesis (denoted by zpew) Will be given by

Mmax

Znew-SCOTE = Zpext.SCOTE -+ Z (log14)
i:|2nex:-tgt|+1
= Znext-Score+ - (Nmax — |Znext-tgt|) (5.98)

Using this result, we can define bound as

bound = zpest.-Score — A+ (Nmax — |Znext-tgt|) (5.99)

An alternative way to derive the lower bound is to simply consider n,,x times of word
reward, given by

bound = zpest.SCOTE — X Nmax (5.100)

This is a loose lower bound and leads to less pruning.

In the case of length normalization, we can do this in a similar way. For example, consider
the length normalization model Score(x,y) = %, as in Eqs. (5.72-5.73). A lower
bound on admissible model scores is given by

Pr(2pext tgt
bound — Lrlnext-tgtx) (5.101)

nmax

In practice, such a lower bound can be defined in several different ways to guarantee the
optimality of search, depending on which model and search strategy are used in the sequence-
to-sequence systems [Huang et al., 2017b; Stahlberg and Byrne, 2019].

We can easily apply these lower bounds to the above exact search algorithm by replacing
line 9 with Eq. (5.99) or (5.101). As a side effect, the search will explore more hypotheses and
thus be much slower.

Differentiable Search

We have addressed the search problem through the introduction of heuristic search algorithms
in which we try to minimize the scoring function on a set of sequences of discrete variables.
An alternative possibility is to relax these discrete variables to continuous variables and to
formulate the problem using the framework of continuous optimization [Hoang et al., 2017;
Kumar et al., 2021]. While we try to use a consistent notation throughout this book, it is
convenient here to introduce some new notation that is slightly different from that adopted in
the previous chapters. We will use a vector y}* € {0, 1}‘Vy| to denote the one-hot representation
of y;. Suppose the output at step 4 is a distribution over V4, denoted by Pr(-|y<;,x). Then, we

5.4 Search 257

can write the log probability of y; at step ¢ as a dot product of two vectors, like this

logPr(yily<i,x) = yi -logPr(-ly<i,x)
= y; logPr(-lyy...yi"1,%) (5.102)

where y «; = yo...y;—1 1s represented as a sequence of one-hot vectors y§ ...y} ;. As discussed
in Chapter 3, the right-hand side of the above equation means the selection of the entry y; of
the vector log Pr(-|y<i,x) (or logPr(-|yy ...y Y 1,%)).

Using this notation, we can write log Pr(y|x) as

n
logPr(ylx) = > logPr(yly<i,x)
i=1

n
= >y logPr(-lyy..y; 1, x) (5.103)

i=1

Provided we use log Pr(y|x) as the objective function (i.e., score(x,y) = log Pr(y|x)),
the search problem can be formulated as

n
VoY = argmany;V-logPr(-]yS’...yX’_l,x) (5.104)
yryw i=1

This is equivalent to the standard form for inference of sequence-to-sequence models, given by

Yy = Yo--Un
= argmaxPr(yo...yn|Xx) (5.105)
Yo.--Yn
Given Eq. (5.104), we can now relax each one-hot vector to a real-valued vector with a
constraint that the sum of all its entries is equal to 1, that is,

yY e +RIW (5.106)
st [ly¥L = 1 (5.107)

In this way, y}" can be informally treated as a |V;|-dimensional embedding of y;, though
it has much more dimensions than the usual embeddings used in NLP. Now y" does not
correspond to a specific word in the vocabulary, but describes a distribution over the vocabulary.
In Hoang et al. [2017]’s work, y}" - log Pr(-|y¢) ...y} 1,%) is called the expected embedding
under the distribution log Pr (-
Eq. (5.104) in fact defines a “new” task in which we try to maximize a sum of continuous

vy ---yi_1,x). What is interesting about this formulation is that

variables (i.e., a sum of n expected embeddings).
We can solve Eq. (5.104) by using the off-the-shelf toolkits in optimization. Since we
have a constraint that y}" is a variable in a simplex', it is straightforward to apply general

13Simplex is a term used in geometry. In a Euclidean space, a k-simplex is a k-dimensional polytope described

5.4.6

258 Chapter 5. Sequence-to-Sequence Models

constrained optimization algorithms to this problem. An alternative way is to use algorithms
that are designed to solve the optimization problem with simplex constraints. The details of
these algorithms can be found in many books on optimization.

A third choice of solving Eq. (5.104) is to formulate the constraints in the objective
function explicitly and to use gradient descent methods to optimize this function. For example,
Hoang et al. [2017] modify Eq. (5.104) and obtain a new form for optimization

n
Vo -y, = argmaxZSoftmax(y}")-logPr(-]yE)”...y;"’,l,x) (5.111)
MATRED 24 i=1

Here we remove the simplex constraint from y", and impose it on a new output that is produced
by a Softmax function.

Once we have obtained the optimal sequence y{'...y,’, we need to map each y;' to a
unique word. A simple method is to take the word corresponding to the entry of y;" with the
largest value. However, this may break the optimality of the solution because the condition
Yo ---¥;_; is changed when these variables are discretized. A more practical method is to
perform optimization to predict the next word given a prefix, say, we fix yg ...y} ; to the
one-hot representations of the optimal prefix, and maximize > ;_.y} -logPr(-|yy...y}_;,%).
Then, we select the best word at position 2 and move on to the next position.

So far we have assumed that the search objective is derived from the log probability
log Pr(y|x) and the length of the output is given in advance. To have a search over sequences
with different lengths, we can repeat the above optimization procedure for every n € [1, npax),
and select the sequence with the maximum score. This also makes it easy to introduce length
normalization and reward into search. We can ignore the length bias issue in each search
with a fixed n, and add the length models after optimization, that is, we leave the search
objective unchanged, but, in the final step, we select the best sequence in a set of candidates
with different n in terms of score(x,y).

Hypothesis Diversity

Multiple outputs are often required when one wants to rescore these outputs and/or interact
with the system. One of the most widely used methods is to use beam search to generate a
number of top-ranked hypotheses. For example, we can simply view the elements of Heap
as the k-best hypotheses in beam search (see Section 5.4.2). However, this approach suffers
from the problem that there is often little difference among the hypotheses in the beam, and

by a set of k + 1 independent points {po, P1,..., Pk }- This polytope is defined as a set of points

Py gimplex = {ao-po+a1-p1+..+a -pi} (5.108)
where
>ap = 1 (5.109)

a; > 0 foranyie€ [0,k] (5.110)

5.4 Search 259

Rank | Output

1 | Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week
for “The Price Is Right” when Bob Barker, 91, showed up to run his old show.

2 | Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week
for "The Price Is Right" when Bob Barker showed up to run his old show.

3 | Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week
for "The Price Is Right" when Bob Barker, 91, showed up to run the show.

4 | Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker, 91, showed up to run his show.

Table 5.3: 4-best outputs of a text summarization system on a sample in the CNN/Daily Mail
dataset (beam size = 4). We see that these texts differ only by a few words.

it is difficult to figure out which one is better though more options are available to users.
Table 5.3 shows the 4-best outputs of a text summarization system. We see that these texts
are fairly similar to each other. One reason for this phenomenon is that diverse hypotheses,
though probably with high model scores when completed, will be pruned away if they are
low-ranked in some stages of beam search. From a modeling perspective, we can interpret this
as a problem with the locally normalized models that we use here: every prediction is made
on an intermediate step of search, and there is no way for the following steps to escape if the
prefix is fixed [Murray and Chiang, 2018].

One approach to improving the hypothesis diversity is to give penalties to cases where the
hypotheses in the beam are less diverse [Li and Jurafsky, 2016; Vijayakumar et al., 2018]. A
simple example of such objective functions is given by

scoreq(x,y) = score(x,y)—\-dp (5.112)

It combines the original model score score(x,y) and a diversity penalty dp. dp can be defined
in a few different ways. An idea is to penalize hypotheses that are close in the search tree. For
example, one can define dp as the rank of a hypothesis in the set of its siblings that are extended
from the same parent hypothesis, and so the beam can spread its members over a larger
region of the space of hypotheses [Li and Jurafsky, 2016]. Another way to introduce diversity
measures is to consider the differences between the target-side sequences of the hypotheses
in the beam. For example, we can define dp as the average string similarity between a given
hypothesis and other hypotheses in the beam [Xiao et al., 2013].

The above idea can also be expressed as constraints imposed on the search procedure.
For example, we can constrain the beam to include only the hypotheses that are rooted at

5.4.7

260 Chapter 5. Sequence-to-Sequence Models

different parents in the last step [Boulanger-Lewandowski et al., 2013]. More precisely, for
each hypothesis z.yr € Z;—1, we seek the best next-step hypothesis by

Znext = argmax Pr(znext-tgt|x) (5.113)
Znext EExtend(zcur,Vy)

The hypothesis Zyext is then added to Z;. Note that this is essentially a sub-space method that
divides a space of hypotheses into sub-spaces of hypotheses, and collects results over these
sub-spaces. An intuition behind this method is that different sub-spaces can describe different
aspects of the problem, and so we can have diverse solutions.

Another approach to addressing the diversity issue is to perturb beam search by introducing
randomly generated hypotheses into the beam [Holtzman et al., 2020a; Wiher et al., 2022].
One common way to do this is to choose some random words for extending a hypothesis, and
to add the extended hypotheses to the beam. In general, these words can be sampled from
the distribution Pr(-|y«;,x) over the entire vocabulary or its subset. Randomness can also
be added to the inputs of a system at test time. For example, one can express an input word
as a linear combination of its original embedding and the embedding of a word of a random
sequence drawn from the training data [Li et al., 2021b]. In problems having many local
minima, adding random “noise” to search procedures is generally helpful, as we can explore
more diverse hypotheses and prevent the systems from getting stuck in certain regions of the
search space.

Instead of performing search using a single system, we can use multiple systems to obtain
diverse hypotheses. These systems can be built on either different architectures or different
hidden structures/configurations [He et al., 2018; Shen et al., 2019; Wu et al., 2020a; Sun
et al., 2020a]. Although methods of this type do not fall under the search framework that we
have been discussing, combining the results from multiple systems is generally helpful. The
following section will present a discussion on this issue.

Combining Multiple Models

From a machine learning point of view, ensembling are methods for addressing modeling
issues, not search issues. In this subsection, we discuss these methods because their implemen-
tations typically require modifications to the search modules, and we can gain some insight
into the resulting system by viewing it from the search perspective.

In machine learning, ensemble methods aim to make better predictions by combining
predictions of a number of constituent systems or component systems. The problem of
combining multiple systems has been discussed extensively in times when statistical models
emerged in NLP, and is sometimes called system combination methods for emphasizing
its practical use. For sequence-to-sequence models discussed here, a widely used form of
system combination is an average of predictions [Sutskever et al., 2014]. Suppose we have K
sequence-to-sequence models that have been trained. The log probability of the target-side
word y; given its left context y; and the source-side sequence x can be defined by using the

5.4 Search 261

geometric average

K
logPr(yily<i,x) = Zlog Pry.(yily <i,%) (5.114)
k
or alternatively by using the arithmetic average
1K
logPr(yily<i,x) = 1OgK;Prk(yi’}’<i7X) (5.115)

where Pry (y;|y<i,x) is the output of the k-th component system. These forms are so simple
that one can implement them for any sequence-to-sequence models without significant modifi-
cations to existing systems, and they have been used as the basis of many successful systems
in various evaluation tasks [Barrault et al., 2020; Akhbardeh et al., 2021].

A problem with prediction averaging is that all the component systems are required to
follow the same basic form of modeling (see Eq. (5.68)) and we need to have access to the
probabilities {Pry(y;|y<i,x)}. When we have only a set of black-box systems in hand, we
need to perform sequence ensembling. A common idea is to vote from the ensemble of the
sequences produced by the component systems. For example, one of the simplest ways to do
this is hypothesis selection [Hildebrand and Vogel, 2008], in which we simply select the “best”
sequence from the ensemble using some criterion. An alternative way of sequence ensembling
is to regenerate a new sequence differing from any of the original sequences [Matusov et al.,
2006; Rosti et al., 2007]. This typically requires a model that represents the sequences into a
compact representation (such as a lattice), as well as an additional search pass by which we
can find the best output in this new representation of hypotheses (such as lattice search and

rescoring) [Deoras et al., 2011; Stahlberg et al., 2016; Khayrallah et al., 2017].

Note that the ensembling of sequence-to-sequence models is related to the diversity issue
discussed in the previous subsection. It is often thought that component systems need to be
diverse for a better ensembling result, and so we need to build these systems in some way
that we can make them different [Sutskever et al., 2014; Zhou et al., 2017]. One of the most
popular methods is checkpoint ensembling. It takes a number of copies of a model at different
checkpoints during training, and combines these model copies via prediction averaging. This
method can be useful for alleviating the overfitting problem in practice. Also, different models
can be created from a base model under different settings. For example, we can build models
with different numbers of parameters on the basis of a backbone model. A more general
approach is to take models based on different architectures, although this is at the expense of
more development effort.

Another way to view sequence ensembling is that it provides a two-pass search scheme.
In the first pass of search, multiple systems are used to perform inference individually. Each
of these systems has its own bias for modeling and search, and explores different regions of
the search space. A hypothesis explored by one system might not be seen and evaluated by

5.4.8

262 Chapter 5. Sequence-to-Sequence Models

another system. The result of this pass is a diverse ensemble of hypotheses that are “optimal”
from some perspectives. In the second pass of search, we use this ensemble to define a new
space of hypotheses, and use a fine-grained model to search for the final result.

More Search Objectives

In this subsection, we consider more objective functions that can be applied to the search
problem.

1. Search with Future Scores

Most of the algorithms described in this subsection can be viewed as some optimizations of
best-first search algorithms [Meister et al., 2020]. As another example of best-first search, A*
search is widely considered to be a good solution to the general search problem. Vanilla A*
search requires that all states of search are sorted in every search step, which is intractable in
our problems. We therefore still consider beam search and greedy search for our discussion,
but use an A* search-like objective function instead. Specifically, given a search state (x,y<;),
the A* search-like objective function can be defined as

scoreax(X,y<i) = ¢g(x,y<i)+h(x,y<;) (5.116)

Here g(x,y<;) is the reward of the path from the start state to (x,y<;), and h(x,y<;) is the
estimated reward of the “optimal” path from (x,y<;) to the final goal. Because g(x,y<;) and
h(x,y<;) can have arbitrary forms, this framework is very general. For example, if we define

9(x,y<i) = score(X,y<;) (5.117)
h(x,y<) = 0 (5.118)

then scoreax(X,y) is exactly the same as the objective functions discussed previously.

To make full use of this formulation, it seems natural to seek a function of future reward
or future cost. Ideally, we would like h(x,y<;) to be able to compute how much additional
reward we can obtain if we extend (x,y<;) to the best complete hypothesis. This is, however,
intractable because we need to explore all the hypotheses extended from (x,y<;) and find the
best one. It is common practice to use a computationally cheaper model analogous to the real
future reward model. Conventional approaches rely on heuristics to define h(x,y<;) [Koehn
et al., 2007], such as estimating the weights of the words that could be further generated. These
heuristics can be generalized to the knowledge of the model design of sequence-to-sequence
systems [He et al., 2017; Zheng et al., 2018]. A more general approach is to use a value-based
treatment of the problem [Ren et al., 2017; Li et al., 2017a; Leblond et al., 2021]. We can
develop a policy that learns to predict the distribution of y; given x and y;, and a value
function for this policy that learns to predict future rewards. Eq. (5.116) can therefore be
interpreted as a linear combination of the policy score of (x,y<;) and the corresponding value.
Such a treatment of search objectives falls into the framework of value-based search, and has
been successfully employed in reinforcement learning [Silver et al., 2017].

5.4 Search 263

2. Search with Language Models
For a long time, language models played an important role in text generation tasks. For
example, statistical machine translation systems and automatic speech recognition systems
typically rely on large n-gram language models to produce fluent texts. While modern
sequence-to-sequence models are not required to have separate language models, applying
them to sequence-to-sequence search still makes intuitive sense for machine translation and
related problems.

Following the convention that a language model can be treated as a feature of a log-linear
(or linear) model [Och and Ney, 2002], the language model-augmented objective can be defined
as

scorep, (x,y) = logPr(y|x)+ A-logPr(y) (5.119)

This formulation does not involve length reward and normalization terms, but either of them
can be easily used as an additional feature of the model. In general, the language model
Pr(y) is trained solely on target-side sequences, enabling the use of large-scale monolingual
data in sequence-to-sequence models [Gulcehre et al., 2017]. Interestingly, it has been found
that current sequence-to-sequence models are strong language models themselves if they are
trained sufficiently, and a better way to make use of target-side data might be to use it to create
synthetic data, called data augmentation. An example of this is back translation in which we
use a backward translation system to translate target-side sentences to source-side sentences,
and then use this synthetic bilingual data as additional data for training a forward translation
system [Sennrich et al., 2016a; Edunov et al., 2018]. In many tasks, such a simple method can
achieve significant improvements in translation quality, but this result questions the necessity
of using additional language models in neural machine translation.

Note that the model of Eq. (5.119) depends on our choice for the coefficient A\. For machine
translation, we are usually interested in a positive value of A so that our system can produce
more fluent texts. By contrast, a negative value of A means that we want some output that
is less frequent. For example, if A = —1, then Eq. (5.119) can be written as the point-wise
mutual information of x and y

log Pr(y|x) —log Pr(y)
. Pr(x,y)
Pr(x)-Pr(y)

scorem (X,y)

= lo (5.120)

This scoring function has been shown to be useful for generating more diverse outputs for
neural conversation systems [Li et al., 2016].

3. Minimum Bayes Risk Search

So far, our discussion of search objectives has focused on the use of the decision rule of
choosing the highest score hypothesis, called maximum a posteriori (MAP) search'*. An

14In statistics, MAP is a method for inference of the parameters of a statistical model. Suppose we have a model
that describes the distribution of a variable = and the model is parameterized by 8. MAP seeks the optimal value of

264 Chapter 5. Sequence-to-Sequence Models

assumption behind this method is that the posterior probability Pr(y|x) (or the model score
score(x,y)) correlates with the true quality of outputs. In practice, this assumption leads to
several useful properties, e.g., the search system is easy to implement, and the objective of
search is consistent with that of training. However, there are some shortcomings with MAP
search, which causes researchers to consider more powerful methods. One problem with MAP
search is that the objective does not reflect the way one evaluates the system. The metrics
used in end-to-end evaluation of a system may have very different forms from Pr(y|x). A
second problem is that MAP is just a special case of the Bayesian treatment of determining
posterior probabilities. It provides a point estimate of § with no uncertainty measure, and
is sometimes overconfident. In some applications, sequence-to-sequence models spread too
much probability mass across many different hypotheses [Ott et al., 2018a], and MAP may not
describe the major portion of the distribution.

Here we consider minimum Bayes risk (MBR) search that provides ways to introduce
evaluation measures into search, as well as ways to make use of the distributions over hypothe-
ses. The MBR method assumes a risk function on a pair of sequences, denoted by R(y,y;). It
computes the cost of replacing y, with y in terms of some evaluation metric. For example,
we can define the risk score to be 1 — BLEU for machine translation. Then, the risk for y on
a set of sequences €2 is given by the expectation of R(y,y,) with respect to the distribution

Pr(y,|x)

Risk(y) = Ey <pi(y, xRy, yr)

— 3" Ry.y,)-Pr(y,[x) (5.124)
yreQ

However, the summation over all possible target-side sequences is computationally infeasi-
ble. We therefore define €2 to be the k-best outputs or sampled outputs of a system [Eikema
and Aziz, 2020], denoted by dsystem. Then, we take score(x,y) = —Risk(y) and obtain the

0 by maximizing the probability of 6 given x, written as

Opap = argmax Pr(0|z) (5.121)
0

éM AP is also called the mode of the posterior distribution of 6. For the MAP search problem here, we simply
denote 6 by y and seek the mode of Pr(y|x).

As a Bayesian method, we can re-express the above equation using the Bayes’ rule
byap = argmax Pr(z|0) - Pr(0)
0 Pr(z)
argmax Pr(z|6) - Pr(0) (5.122)
6

where 0 is treated as a variable having a prior distribution Pr(6).

By contrast, MLE directly maximizes the likelihood function Pr(x|6)

N argmax Pr(z|0) (5.123)
0

Thus, the MAP result can be viewed as an estimation of € that considers both MLE of = given 6 and the prior of 6.
Note that MAP and MLE will be equivalent if Pr(0) is a uniform distribution.

5.5

5.5 Summary 265

following objective for MBR search

y = argmax—Risk(y)
y

= argmin Z R(y,y.) - Pr(yr|x) (5.125)

Y yr€ stst em

This model is very general and applies to a wide range of NLP problems in which one
needs to search for an optimal hypothesis in a large set of candidates [Goodman, 1996b; Goel
and Byrne, 2000; Kumar and Byrne, 2004b]. It allows for flexible forms of risk functions,
for instance having various factors considered in evaluating hypotheses. MBR search has
recently been of interest to NLP researchers as they are found to be effective in eliminating the
biases caused by MAP search [Miiller and Sennrich, 2021; Freitag et al., 2022]. In addition to
providing a formulation of search objectives, MBR methods can be used for training sequence-
to-sequence models, and are thought to be solutions to the discrepancy issue between objectives
of training and evaluation [Shen et al., 2016].

Summary

In this chapter, we attempted to provide an overview of sequence-to-sequence modeling which
can serve as the basis for many NLP systems. Sequence-to-sequence modeling is a very
rich area of research, and has been widely discussed in different disciplines, even beyond
NLP. This chapter is not a review of all the literature on this subject (this would be a big
project), but focuses on some of the core methods and ideas. We started with an introduction
of sequence-to-sequence problems, as well as the encoder-decoder architecture which lays the
foundations for most of the state-of-the-art sequence-to-sequence systems. As an illustration of
the application of this architecture, we considered the problem of neural machine translation,
and built a simple neural machine translation model using the basic knowledge we have learned
so far.

We also presented the attention mechanism and a series of refinements. If we look back
to the past few years, we will find that exploring attention models is the next natural step
in developing sequence-to-sequence models. While these models are well known for their
application and impressive performance in machine translation, they have dominated the NLP
community. There is also great interest in attention models in some other sub-fields of Al, such
as computer vision [Borji and Itti, 2012; Xu et al., 2015; Jaderberg et al., 2015] and speech
processing [Chorowski et al., 2015; Chan et al., 2016; Bahdanau et al., 2016]. The result is
that the past few years were an exciting time for people in these areas.

Sequence-to-sequence models are so successful that we try to put everything in the same
pocket. Not only have we developed powerful sequence-to-sequence models to deal with very
general problems, but current research is forced to be unifying. An example is that Transformer,
a self-attention-based sequence-to-sequence model, has become one of the fundamental models
for many tasks ranging over different types of data, from textual to visual and acoustic data. It
can even be extended to deal with multimodal problems which are sometimes more challenging.

266 Chapter 5. Sequence-to-Sequence Models

This makes things more interesting and exciting: an improvement to one model can be used
to improve systems in a variety of tasks. And we are seeing a significant change in our
research paradigm in which the NLP and machine learning fields are marrying and results
in NLP research are becoming more influential. However, on the other side of the coin is
that we are making much room for some of the problems but leaving less room for the others.
In recent NLP conferences, we can see many, many papers talking about how to train big
sequence-to-sequence models and apply them to different text generation tasks, but there are a
relatively small number of papers on parsing. There have always been debates on this over the
past few decades, for example, what and how much prior knowledge do we need to build an
NLP system? [Church, 2011; See, 2018] Getting involved in such debates is simply beyond the
discussions in this chapter. Fortunately, NLP research promises to continue to be diverse and
active, and we can always hear and learn from both sides of the debates. For example, there
are interesting findings that the neural sequence models can learn some linguistic properties
from data, and linguistic structures can help system design. In Chapter 6, we will see a few
examples.

The “bias” of research focus also exists on the machine learning side of problem-solving.
For example, for sequence-to-sequence problems discussed here, recent years have witnessed
a drastic increase of interest in model design and training methods, but only a relatively small
group of people discuss the search problem. While search is a classical problem in Al and
plays an important role in practical systems [Russell and Norvig, 2010], it is even not discussed
in recent tutorials and surveys in NLP. This motivates us to write a section on this subject so
that we can have a more complete picture of the problem. However, our general discussion
does not cover all aspects of the search problem. A topic we left out is efficiency [Birch et al.,
2018; Heafield et al., 2021]. While this chapter includes some discussions on the efficiency
issue, such as stopping criteria of search algorithms, efficient methods are a wide-ranging topic
and are generally dependent on model architectures. A more detailed discussion of them can
be found in Chapter 6. Another topic that one may be interested in is constrained search
in which constraints are imposed on the search process [Hokamp and Liu, 2017; Anderson
et al., 2017]. In general, these constraints come from our prior knowledge or interactions with
users. For example, constrained search has been used to enforce term translation constraints
on machine translation [Hasler et al., 2018; Post and Vilar, 2018].

One last note on limitations of this chapter. The formulation of the general sequence-
to-sequence problem described here is based on the left-to-right factorization of Pr(y|x),
resulting in an autoregressive model. One limitation of this formulation is that each prediction
at some step depends only on the preceding words, and so the model cannot access the right
context. To make use of the right context of a word, a simple approach is to build another
model that performs right-to-left generation. The left-to-right and right-to-left models can then
be combined to generate a better output sequence [Liu et al., 2016a; Hoang et al., 2017; Zhang
et al., 2018b; 2020a]. An alternative approach is given by non-autoregressive generation or
non-autoregressive decoding in which the constraint of autoregressive generation is removed
and each word prediction is conditioned on the global context [Gu et al., 2018; Ghazvininejad
etal., 2019; Lee et al., 2020]. A nice property of non-autoregressive generation is the possibility

5.5 Summary 267

of system speed-up, since all the words in a sequence can be generated in parallel and we can
do this efficiently using GPUs.

6.1

6.1.1

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Chapter 6

Transformers

So far we have discussed several basic models for solving sequence-to-sequence problems.
We now explore a new class of models which are based on a powerful architecture, called
Transformer. Transformers differ in several ways from the models given in Chapters 4 and
5. First, they do not depend on recurrent or convolutional neural networks for modeling
sequences of words, but use only attention mechanisms and feed-forward neural networks.
Second, the use of self-attention in Transformers makes it easier to deal with global contexts
and dependencies among words. Third, Transformers are very flexible architectures and can
be easily modified to accommodate different tasks. The past few years have seen the rise
of Transformers not only in NLP but also in several other fields. As Transformers and their
variants continue to mature, these models are playing an increasingly important role in the
research and application of artificial intelligence.

In this chapter, we will discuss the core ideas of Transformers. We will begin our discussion
by looking at the standard Transformer architecture. Then we will look at some notable
developments, such as improvements to the basic architecture and efficient methods. We will
also present several applications in which Transformer models have been extensively used.
However, the discussion of Transformer is a wide-ranging topic, and there have many, many
related papers. This chapter is not intended to provide a comprehensive survey of the literature
but a collection of selected topics that NLP people may be interested in.

The Basic Model

Here we consider the model presented in Vaswani et al. [2017]’s work. We start by considering
the Transformer architecture and discuss the details of the sub-models subsequently.

The Transformer Architecture

Figure 6.1 shows the standard Transformer model which follows the general encoder-decoder
framework. A Transformer encoder comprises a number of stacked encoding layers (or
encoding blocks). Each encoding layer has two different sub-layers (or sub-blocks), called
the self-attention sub-layer and the feed-forward neural network (FFN) sub-layer. Suppose

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

270 Chapter 6. Transformers

we have a source-side sequence x = x7...T,, and a target-side sequence y = yi...y,,. The
input of an encoding layer is a sequence of m vectors h;...h,,, each having d,,qe dimensions
(or d dimensions for simplicity). We follow the notation adopted in the previous chapters,
using H € R™*4 to denote these input vectors'. The self-attention sub-layer first performs a
self-attention operation Attge¢(-) on H to generate an output C:

C = Attself(H) (6.1)

Here C is of the same size as H, and can thus be viewed as a new representation of the inputs.
Then, a residual connection and a layer normalization unit are added to the output so that the
resulting model is easier to optimize.

The original Transformer model employs the post-norm structure where a residual con-
nection is created before layer normalization is performed, like this

Hyr = LNorm(C+H) 6.2)

where the addition of H denotes the residual connection, and LNorm(-) denotes the layer
normalization function. Substituting Eq. (6.1) into Eq. (6.2), we obtain the form of the
self-attention sub-layer

Layerself(H) = Har
= LNorm(Attge(H) + H) (6.3)

The definitions of LNorm(+) and Attg¢(-) have been given in Chapters 2 and 5, and we will
also discuss them later in the section.

The FFN sub-layer takes Hy.jr and outputs a new representation Hg,, € R™*d_ Tt has the
same form as the self-attention sub-layer, with the attention function replaced by the FFN
function, given by

Layerffn (Hself) = Hffn
= LNorm(FFN(Hself) + Hself) (6.4)

Here FEN(-) could be any feed-forward neural networks with non-linear activation func-
tions. The most common structure of FFN(-) is a two-layer network involving two linear
transformations and a ReL U activation function between them.

For deep models, we can stack the above neural networks. Let H' be the output of layer
I. Then, we can express H' as a function of H'~1. We write this as a composition of two

h;
"Provided h; € R? is a row vector, we have H =
h’"L

6.1 The Basic Model

271

P

r(-|yo, 1. Tm)

Pr(-|yo.--Yn—1,21...Tm)

Encoder

-)[Add & LayerNorm

i

Feed-Forward Network
Lx

-

Softmax(STW,) l

Add & LayerNorm](—

T

Feed-Forward Network
Layerﬁn ()

T

: Layerffn ()
-)[Add & LayerNorm

T

Self-Attention
Layerself ()

Word Position

T1...Tm

h

Encoder-Decoder Attention
Layer,, g5 ()

T

Self-Attention
Layerself ()

Word Position

Yoyi---Yn—1

Add & LayerNorm l(—

T ><L

Add & LayerNorm](—

Figure 6.1: The Transformer architecture [Vaswani et al., 2017]. There are L stacked layers on
each of the encoder and decoder sides. An encoding layer comprises a self-attention sub-layer
and an FFN sub-layer. Both of these sub-layers share the same structure which involves a
core function (either Layer,.;(+) or Layerg, (+)), followed by a residual connection and a layer
normalization unit. Each decoding layer has a similar architecture with the encoding layers, but
with an additional encoder-decoder attention sub-layer sandwiched between the self-attention
and FFN sub-layers. As with most sequence-to-sequence models, Transformer takes xi...x,,
and yg...y;—1 for predicting y;. The representation of an input word comprises a sum of a
word embedding and a positional embedding. The distributions {Pr(-|yo...yi—1,21...2:,)} are
generated in sequence by a Softmax